首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《数学季刊》2016,(2):147-154
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) 6= C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K8,n are discussed in this paper. Particularly, the VDIET chromatic number of K8,n are obtained.  相似文献   

2.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

3.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

4.
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)~(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained.  相似文献   

5.
An adjacent vertex distinguishing incidence coloring of graph G is an incidence coloring of G such that no pair of adjacent vertices meets the same set of colors.We obtain the adjacent vertex distinguishing incidence chromatic number of the Cartesian product of a path and a path,a path and a wheel,a path and a fan,and a path and a star.  相似文献   

6.
Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper.  相似文献   

7.
The strong chromatic index of a graph is the minimum number of colors needed in a proper edge coloring so that no edge is adjacent to two edges of the same color. An outerplane graph with independent crossings is a graph embedded in the plane in such a way that all vertices are on the outer face and two pairs of crossing edges share no common end vertex. It is proved that every outerplane graph with independent crossings and maximum degree ? has strong chromatic index at most 4?-6 if ? ≥ 4, and ...  相似文献   

8.
Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-coloring f of a graph G and any vertex u of G, let Cf (u) or C(u) denote the set of colors of vertex u and the edges incident to u. We call C(u) the color set of u. If C(u) ≠ C(v) for any two different vertices u and v of V(G), then we say that f is a vertex-distinguishing E-total-coloring of G, or a VDET coloring of G for short. The minimum number of colors required for a VDET colorings of G is denoted by X^evt(G), and it is called the VDET chromatic number of G. In this article, we will discuss vertex-distinguishing E-total colorings of the graphs mC3 and mC4.  相似文献   

9.
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u)≠ C(v) for any two different vertices u and v of V(G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by χ_(vt)~e(G) and is called the VDET chromatic number of G. The VDET coloring of complete bipartite graph K_(7,n)(7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K_(7,n)(7 ≤ n ≤ 95) has been obtained.  相似文献   

10.
An adjacent vertex distinguishing edge-colorings of a graph G is a proper edge coloring of G such that any pair of adjacent vertices have distinct sets of colors. The minimum number of color required for an adjacent vertex distinguishing edge-coloring of G is denoted by χa'(G). In this paper, we prove that if G is a planar graph with girth at least 5 and without isolated edges, then χa'(G)≤ max{8,Δ(G)+1}. © 2022, Chinese Academy of Sciences. All right reserved.  相似文献   

11.
Vertex Distinguishing Equitable Total Chromatic Number of Join Graph   总被引:7,自引:0,他引:7  
A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any two colors is not more than 1. In this paper we shall give vertex distinguishing equitable total chromatic number of join graphs Pn VPn, Cn VCn and prove that they satisfy conjecture 3, namely, the chromatic numbers of vertex distinguishing total and vertex distinguishing equitable total are the same for join graphs Pn V Pn and Cn ∨ Cn.  相似文献   

12.
A proper [h]-total coloring c of a graph G is a proper total coloring c of G using colors of the set [h]={1,2,...,h}.Letw(u) denote the sum of the color on a vertex u and colors on all the edges incident to u.For each edge uv∈E(G),if w(u)≠w(v),then we say the coloring c distinguishes adjacent vertices by sum and call it a neighbor sum distinguishing [h]-total coloring of G.By tndi(G),we denote the smallest value h in such a coloring of G.In this paper,we obtain that G is a graph with at least two vertices,if mad(G)3,then tndi∑(G)≤k+2 where k=max{Δ(G),5}.It partially con?rms the conjecture proposed by Pil′sniak and Wozniak.  相似文献   

13.
Let f be a proper edge coloring of G using k colors.For each x∈V(G),the set of the colors appearing on the edges incident with x is denoted by S_f(x)or simply S(x)if no confusion arise.If S(u)■S(v)and S(v)■S(u)for any two adjacent vertices u and v,then f is called a Smarandachely adjacent vertex distinguishing proper edge coloring using k colors,or k-SA-edge coloring.The minimum number k for which G has a Smarandachely adjacent-vertex-distinguishing proper edge coloring using k colors is called the Smarandachely adjacent-vertex-distinguishing proper edge chromatic number,or SAedge chromatic number for short,and denoted byχ'_(sa)(G).In this paper,we have discussed the SA-edge chromatic number of K_4∨K_n.  相似文献   

14.
The total chromatic number XT(G) of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no adjacent or incident pair of elements receive the same color. G is called Type 1 if XT(G)=Δ(G) 1. In this paper we prove that the join of a complete bipartite graph Km,n and a cycle Cn is of Type 1.  相似文献   

15.
A graph is 1-planar if it can be drawn on the Euclidean plane so that each edge is crossed by at most one other edge. A proper vertex k-coloring of a graph G is defined as a vertex coloring from a set of k colors such that no two adjacent vertices have the same color. A graph that can be assigned a proper k-coloring is k-colorable. A cycle is a path of edges and vertices wherein a vertex is reachable from itself. A cycle contains k vertices and k edges is a k-cycle. In this paper, it is proved t...  相似文献   

16.
Hua Cai 《数学学报(英文版)》2015,31(12):1951-1962
A k-total-coloring of a graph G is a coloring of vertices and edges of G using k colors such that no two adjacent or incident elements receive the same color.In this paper,it is proved that if G is a planar graph with Δ(G) ≥ 7 and without chordal 7-cycles,then G has a(Δ(G) + 1)-total-coloring.  相似文献   

17.
The Entire Coloring of Series-Parallel Graphs   总被引:2,自引:0,他引:2  
The entire chromatic number X_(vef)(G) of a plane graph G is the minimal number of colors needed for coloring vertices, edges and faces of G such that no two adjacent or incident elements are of the same color. Let G be a series-parallel plane graph, that is, a plane graph which contains no subgraphs homeomorphic to K_(4-) It is proved in this paper that X_(vef)(G)≤max{8, △(G) 2} and X_(vef)(G)=△ 1 if G is 2-connected and △(G)≥6.  相似文献   

18.
For a proper edge coloring c of a graph G,if the sets of colors of adjacent vertices are distinct,the edge coloring c is called an adjacent strong edge coloring of G.Let c i be the number of edges colored by i.If |c i c j | ≤ 1 for any two colors i and j,then c is an equitable edge coloring of G.The coloring c is an equitable adjacent strong edge coloring of G if it is both adjacent strong edge coloring and equitable edge coloring.The least number of colors of such a coloring c is called the equitable adjacent strong chromatic index of G.In this paper,we determine the equitable adjacent strong chromatic index of the joins of paths and cycles.Precisely,we show that the equitable adjacent strong chromatic index of the joins of paths and cycles is equal to the maximum degree plus one or two.  相似文献   

19.
Let G=(V,E)be a graph andφbe a total coloring of G by using the color set{1,2,...,k}.Let f(v)denote the sum of the color of the vertex v and the colors of all incident edges of v.We say thatφis neighbor sum distinguishing if for each edge uv∈E(G),f(u)=f(v).The smallest number k is called the neighbor sum distinguishing total chromatic number,denoted byχ′′nsd(G).Pil′sniak and Wo′zniak conjectured that for any graph G with at least two vertices,χ′′nsd(G)(G)+3.In this paper,by using the famous Combinatorial Nullstellensatz,we show thatχ′′nsd(G)2(G)+col(G)-1,where col(G)is the coloring number of G.Moreover,we prove this assertion in its list version.  相似文献   

20.
A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let χ_Σ'(G) denote the smallest value k in such a coloring of G. This parameter makes sense for graphs containing no isolated edges(we call such graphs normal). The maximum average degree mad(G) of G is the maximum of the average degrees of its non-empty subgraphs. In this paper, we prove that if G is a normal subcubic graph with mad(G) 5/2,then χ_Σ'(G) ≤ 5. We also prove that if G is a normal subcubic graph with at least two 2-vertices, 6 colors are enough for a neighbor sum distinguishing edge coloring of G, which holds for the list version as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号