首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of a newly isolated anionic tobacco peroxidase from transgenic tobacco plants overexpressing the enzyme have been studied with respect to the chemiluminescent reaction of luminol oxidation. These were compared to the properties of horseradish peroxidase in the cooxidation of luminol and p -iodophenol, the enhanced chemiluminescence reaction. The pH, luminol and hydrogen peroxide concentrations were optimized for maximum sensitivity using the tobacco enzyme. The detection limit for the latter under the optimal conditions (2.5 m M luminol, 2 m M hydrogen peroxide, 100 m M Naborate buffer, pH 9.3) was about 0.1 p M , which is at least five times lower than that for horseradish peroxidase in enhanced chemiluminescence with p -iodophenol. The rate constants for the elementary steps of the enzyme-catalyzed reaction have been determined: k 1= 4.9 × 106 M −1 s1, k 2= 7.3 × 106 M −1 s−1, k 3= 2.1 × 106 M −1 s−1 (pH 9.3). The similarity of these rate constants is unusual for plant peroxidases. The high catalytic activity of tobacco peroxidase in the luminescent reaction is explained by the high reactivity of its Compound II toward luminol and the high stability of the holoenzyme with respect to heme dissociation. This seems to be a unique property of this particular enzyme among other plant peroxidases.  相似文献   

2.
Abstract— The catalytic action of protohematin was studied during the H2O2-dependent chemiluminescent luminol reaction. In spite of the fact that the catalyst was ultimately inactivated, the average protohematin molecule catalyzed the consumption of about 103 molecules of luminol. The inactivation of catalyst and the initial consumption of luminol were studied during the luminescent reaction with different concentrations of reactants. A scheme accounting for the experimental observations is proposed. The formation of a primary protohematin-H2O2 complex is followed by binding of luminol, resulting in a ternary complex. A nucleophilic attack by a second molecule of H2O2 on the luminol molecule results in light emission from excited aminophthalate via a hypothetical peroxide adduct. The destruction of protohematin occurs via the attack of H2O2 on the porphyrin structure of the protohematin-H2O2 complex. Second order rate constants for the destruction of protohematin, the formation of the luminol complex and the nucleophilic attack of H2O2 are presented.  相似文献   

3.
Abstract— This study focuses on the fact that the chemiluminescence in the visible region is emitted from the H2O2/gallic acid/ horseradish peroxidase (HRP) and the H2O2/gallic acid acetaldehyde (MeCHO) systems. The concentration dependence of chemiluminescence intensity that led to the different response of HRP and MeCHO toward H2O2 indicates that the photon emission participates with peroxidase activity including an electron transfer reaction. From our experimental results, in this study, we postulated a reaction process for chemiluminescence based on a one-electron redox shuttle from H2O2 by peroxidase. The photon intensity and spectra data from the H2O2/ HRP and the H2O2/MeCHO systems with various cate-chins were not only affected by HRP and MeCHO but also corresponded with the chemical structure of cate-chins. The energy calculated from the spectra is 47–64 kcal/mol. These results suggested that the chemiluminescence of both systems arose from excited carbonyl compounds produced by an intermediate of the alkyl radical and the metal-bound hydroxyl (compound II species). Hydroxyl radical inhibition, showing a notable increase from the gallic acid addition, makes the decay of the hydroxyl form of heme iron the most likely candidate for the chemiluminescence.  相似文献   

4.
p-Coumaric acid has a greater enhancing effect on the chemiluminescence of the luminol-H2O2-horseradish peroxidase system, at low concentration, than other phenolic acids studied. We have used this effect to study the variations of the chemiluminescent signal with luminol, hydrogen peroxide, p-coumaric acid, horseradish peroxidase concentrations and pH, using the stopped-flow technique, by monitoring the initial reaction rate. The interference effects of other phenolic acids on the enhanced chemiluminescence with p-coumaric acid (25 nM) were negligible at similar concentrations of phenolic acid. We monitored the chemiluminescence intensity at 10 s for the determination of p-coumaric acid in beers. The detection limit was ca. 0.7 nM and the linear range was 0–12.5 nM. The precision of the method, expressed as a relative standard deviation, was 2.5%.  相似文献   

5.
THE ROLE OF O2- IN THE CHEMILUMINESCENCE OF LUMINOL*   总被引:1,自引:0,他引:1  
Abstract— The chemiluminescence of luminol in buffered aqueous solutions is inhibited by superoxide dismutase. This occurs whether the luminescence is induced by ferricyanide, persulfate, hypochlorite, or by the action of xanthine oxidase on xanthine. Since superoxide dismutase inhibits reactions which involve O2-, we conclude that this radical is a constant factor in the chemiluminescence of luminol in aqueous solutions. The kinetics of light production are discussed in terms of hypothetical mechanisms that fit the available data. The strong luminescence of luminol in aprotic solvents or in aqueous systems containing relatively high concentrations of H2O2 could not be explored in this way, because superoxide dismutase is inactive under such conditions.  相似文献   

6.
Abstract— Thermolysis of tetramethyl-l,2-dioxetane is a convenient source of triplet acetone, which can be monitored in aerated solutions by the sensitized fluorescence of 9,10-dibromoanthracene. We have investigated the quenching of chemiexcited triplet acetone in air-equilibrated aqueous solutions containing the 9,10-dibromoanthracene-2-sulfonate ion by five classes of compounds: indoles, tyrosine derivatives, quinones, riboflavin, and xanthene dyes. Quenching rates for indoles, tyrosine and its 3,5-dihalogenoderivatives, and xanthene dyes (kq= 108-109 M-1 s-1) are considerably smaller than the diffusion controlled rate, whereas those for quenchers with high electroaffinities, such as quinones (IP = 10–11 eV), approach the diffusion controlled rate (kq= 1010 M-1 s-1). Energy transfer for riboflavin probably occurs by a triplet-singlet Förster type process.
A comparison of the present data with previous studies of quenching of enzymically generated triplet acetone (isobutanal/O2/horseradish peroxidase) by the same classes of quenchers (except riboflavin) reveals that, independent of the nature of the quencher and the deactivation mechanism, the Stern-Volmer quenching constants ( kq t0) are systematically about one order of magnitude higher in the enzymatic system. The difference is attributed to a longer lifetime of triplet acetone in the latter case, "protected" in an enzyme cavity against collisions with dissolved oxygen.  相似文献   

7.
Abstract— Measurements of the redox potential of the chemiluminescent compound 10,10' dimethyl-9,9' biacridylium nitrate (-0.093 V) show that it is thermodynamically possible to reduce it with hydrogen peroxide or with ammonium hydroxide in alkaline solutions at equilibrium concentrations sufficiently high to account for the observed chemiluminescence. Reduction of the compound with ammonium hydroxide takes place much more slowly than the corresponding reaction with hydrogen peroxide so that when both redox couples (O2/H2O2 and N2H4/NH4OH) are present the hydrogen peroxide couple predominates if oxygen is supplied. It was shown that interference with the oxygen supply or its partial removal with nitrogen brings about an increase in chemiluminescence intensity in NH4OH while increasing the concentration of oxygen diminished the intensity.
5-amino 2,3 phthalazine 1,4 dione (luminol) also appears to undergo a reduction following a two step oxidation. This is shown by the fact that when oxygen was supplied the chemiluminescence intensity was found to be directly proportional to the OH- concentration while a typical titration curve with p K 11.7 is exhibited by the intensity when the oxygen supply is limited in mixtures of luminol and peroxydisulfate. The peroxide presumably arises in the first oxidation step. Amino peroxyphthalic anhydride is suggested as an intermediate which is reduced to the aminophthalate ion, the presumed emitter in the chemiluminescence.  相似文献   

8.
Huang X  Ren J 《Analytica chimica acta》2011,686(1-2):115-120
In this paper, we report a new strategy of chemiluminescence resonance energy transfer (CRET) by using gold nanoparticles (AuNPs) as efficient long-range energy acceptor in sandwich immunoassays. In the design of CRET system, we chose the highly sensitive chemiluminescence (CL) reaction of luminol and hydrogen peroxide catalysed by horseradish peroxidase (HRP) because the CL spectrum of luminol (λ(max) 425 nm) partially overlaps with the visible absorption bands of AuNPs. On the basis of CRET strategy, we developed a sandwich immunoassay of alpha fetoprotein (AFP) cancer marker. In immunoassay, two antibodies (anti-AFP-1 and anti-AFP-2) were conjugated to AuNPs and horseradish peroxidase (HRP), respectively. The sandwich-type immunoreactions between the AFP (antigen) and the two different antibodies bridged the donors (luminol) and acceptors (AuNPs), which led to the occurrence of CRET from luminol to AuNPs upon chemiluminescent reaction. We observed that the quenching of chemiluminescence signal depended linearly on the AFP concentration within a range of concentration from 5 to 70 ng mL(-1) and the detection limit of AFP was 2.5 ng mL(-1). Our method was successfully applied for determination of AFP levels in sera from cancer patients, and the results were in good agreement with ELISA assays. This approach is expected to be extended to other assay designs, that is, using other antibodies, analytes, chemiluminescent substance, and even other metallic nanoparticles.  相似文献   

9.
Yannis Dotsikas 《Talanta》2007,71(2):906-910
In the present study, three luminol signal enhancers {4-methoxyphenol, 4-hydroxybiphenyl and 4-(1H-pyrrol-1-yl)phenol} were utilized in the chemiluminescence (CL) substrate solution of horseradish peroxidase (HRP). The latter was applied in a heterogenous enzyme immunoassay that has been previously described. The employment of these molecules greatly affected important assay parameters, such as detection limit and the range of the calibration curve and the results were compared with those obtained from other two similar enhancers that have been described from our group. Practically, the use of a novel enhancer, even if this is a slightly changed 4-substituted phenol derivative, can affect assay properties so dramatically, one can assume that another substrate/enzyme system was applied. Furthermore, the use of different luminol signal enhancers in the luminol/HRP/H2O2 system affected not only the intensity of the obtained signal, which is well known, but also its kinetics. It was monitored that the stronger intensity was combined with a more rapid decrease of the CL signal.  相似文献   

10.
Abstract— Flash photolysis of neutral red between pH 1.3 and pH 11 yields the triplet species 3DH2+23DH+ and 3D. Both 3DH2+2 and 3D exhibit first order decay with rate constants of 1.6 ± 0.3 × 104 s-1 but 3DH+ decays within the lifetime of the flash. Over the entire pH range, ascorbic acid quenches the triplet, forming the semireduced radicals DH3+2 DH2+ and DH, all of which exhibit second order decay with k = 1.8 ± 0.4 ± 108 M -1s-1 most probably by recombination with semioxidized ascorbic acid. The dependence of the rate of decay of radical neutral red on the identity of reversible reductants supports the back-electron transfer mechanism, as does digital simulation of complex radical disproportionation schemes. In contrast to the efficient reduction of triplet neutral red by ascorbic acid, its reduction by EDTA is quite inefficient.  相似文献   

11.
Abstract Chloroplasts promote a slow oxygen consumption by phenylacetaldehyde. The latter elicits a sustained red emission and induces reduction of tetrazolium blue. Addition of horseradish peroxidase greatly increases both O2 uptake and the initial light emission, but has little or no effect upon the reduction of tetrazolium blue. These results indicate that chlorophylls in chloroplasts can be efficiently excited in the absence of light.  相似文献   

12.
Abstract— Tetracycline molecules offer several sites for peroxidative metabolism of the type known to lead to oxygen consumption and electronic cxcitation. Accordingly, when tetracycline and chlortetracycline were exposed to horseradish peroxidase in the presence of hydrogen peroxide, oxygen was taken up and light emission was observed. The overall quantum yield ofchemiluminescencc is on the order of 10 6, but that of chemiexcitation may be orders of magnitude higher as suggested by studies of sensitized emission. Given the widespread distribution of peroxidases, the formalion of highly reactive metabolites of tetracycline may have biological importance.  相似文献   

13.
《Analytical letters》2012,45(8):1841-1859
Abstract

A flow-injection sandwich enzyme immunoassay for human IgG as model antigen by using horseradish peroxidase as label, polystyrene beads as solid support, and the enhanced chemiluminescence reaction for peroxidase quantitation is described. the kinetics of antigen—immobilized antibody interaction has been studied and the quantitative time-concentration ranges of reactions have been estimated. Each of the two immunochemical steps of analysis have been pursued in the kinetic regime. the time for each immunochemical step was reduced to 2–3 min. the enhanced luminescent reaction involving luminol and p-iodophenol as substrates was used to detect the peroxidase label. the conditions for chemiluminescent reaction were optimized. the detection limit for peroxidase in a 3 min assay was 5–10?16 moles/tube. the detection limit for IgG, in the developed immunoassay, is 10?9 M, the overall time of the assay being 5–10 min.  相似文献   

14.
A spectrophotometric cell comprising parallel bioreactors facing each other and containing immobilized enzyme preparations is described. The lower reactor rotates to minimize diffusional constraints, and the upper reactor is fixed to provide an integrated design for the realization of coupled enzyme-catalyzed reactions. The operating characteristics of the cell are illustrated with the determination of glucose using glucose oxidase [EC 1.1.3.4] and horseradish peroxidase [EC 1.11.1.7] as immobilized enzymes (horseradish peroxidase on the rotating reactor and glucose oxidase on the stationary one). The H2O2 produced in the dissolved-oxygen oxidation of β- -glucose enters into oxidative coupling in a reaction with N,N-dimethylaniline and 4-aminophenazone which is catalyzed by horseradish peroxidase; the absorbance of the colored complex formed provides the basis for monitoring. The cell was incorporated into a continuous-flow/stopped-flow/continuous-flow operation, and the determination was based on the rate of response under stopped-flow conditions. The overall approach was applied to the determination of glucose in standards of human serum and samples of bovine blood serum.  相似文献   

15.
本文首次报道了人血清免疫反应后直接进样并利用毛细管电泳分离化学发光灵敏检测AFP的新方法, 检测结果与医院使用的全自动微粒子化学发光仪检测结果吻合.  相似文献   

16.
Two chemiluminescent flow-injection analysis systems for the detection of the red tide Phytoplankton Heterosigma carterae (formerly known as Heterosigma akashiwo) have been developed. In one system, the superoxide (O2) released by H. carterae reacts with 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]-pyrazin-3-one (MCLA), a superoxide specific probe. In the other system, the hydrogen peroxide released by H. carterae reacts with luminol catalyzed by Arthromyces ramosus peroxidase (ARP). The chemiluminescence is detected by a photomultiplier tube. This system is capable of the rapid determination of H. carterae; the time required for one measurement cycle is ca. 2 min using MCLA-dependant luminescence or 1 min in luminol/ARP luminescence. A linear response was observed from 102 to 105 cells ml−1 H. carterae. Several other species of phytoplankton gave no response using this system. The detection limit of this method is suitable for detecting H. carterae in the early stage of red tide formation.  相似文献   

17.
光导纤维胆固醇生物传感器的研究   总被引:7,自引:0,他引:7  
将胆固醇酯酶、胆固醇氧化酶和辣根过氧化物酶通过戊二醛交联反应,固定在牛血清蛋白上,制成光纤胆固醇生物传感器的传感膜.此传感器偶合了胆固醇酯水解、胆固醇的氧化和鲁米诺同过氧化氢的化学发光等3种酶催化反应,通过光纤输出的化学发光信号进行检测.测定总胆固醇和自由胆固醇的线性范围均为0.5~20μg/mL,检测下限为0.1μg/mL,响应时间为2min,寿命在2个月以上,适用于血清中总胆固醇和游离胆固醇的测定.  相似文献   

18.
Homogentisic acid gamma-lactone (HAL) chemiluminescence (CL) was applied to the determination of horseradish peroxidase (HRP) encapsulated in liposomes. HRP was detected after the lysis of HRP-trapped liposomes with Triton X-100. CL response rate, detection limit and linear range of calibration curve for HRP in HAL CL were compared with those in piodophenol (p-IP)-enhanced luminol CL. Maximal light emission in HAL CL appeared more rapidly compared to that in p-IP enhanced luminol CL, thus resulting in remarkable reduction of CL measurement time. The detection limit for HRP in HAL CL was the same as that in p-IP-enhanced luminol CL. The linear range of calibration curve for HRP in HAL CL was improved by a factor of 50 compared with that in p-IP-enhanced luminol CL. From these results, it was found that HAL CL were superior to p-IP-enhanced luminol CL for the determination of HRP encapsulated in liposomes.  相似文献   

19.
IntroductionIn recent years chemiluminescence (CL)biosensor prepared by immobilization of a sensitivereagent such as peroxidase or oxidase onto a solidmatrix has attracted much attention due to the highsensitivity of the chemiluminescent reaction of thesensitive reagent even with a simple instrument.Generally,CL biosensors can be divided into twocategories.One consists of hydrogen peroxide sen-sors prepared by immobilizing a kind of peroxidaseonto a suitable solid support[1,2 ] ,and the immo…  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号