首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A nanocomposite of graphene oxide supported by monodisperse rod-like α-Fe2O3 nanocrystals (GO/α-Fe2O3 nanocomposites) has been fabricated through a simple hydrolysis precipitation route in a water–ethanol system. The nanocomposites were characterized by X-ray diffraction, Raman spectra and transmission electron microscopy, respectively. The GO/α-Fe2O3 nanocomposites are GO nanosheets decorated randomly by α-Fe2O3 nanorods with diameters in the range of 3–5 nm and lengths of 20–30 nm, while only hollow α-Fe2O3 microspheres constructed by the radically oriented single-crystalline nanorods are observed in the absence of GO. Compared with pure α-Fe2O3 nanoparticles, α-Fe2O3/GO nanocomposites exhibited excellent photocatalytic activity as evident from the degradation of rhodamine B in water under UV irradiation. The superior photocatalytic activity performance of α-Fe2O3/GO nanocomposites could be attributed to the synergetic effect between the conducting GO nanosheets and monodisperse α-Fe2O3 nanorods.  相似文献   

2.
Without the addition of surfactants or templates, ultrafine α-Fe2O3 nanoparticles were successfully synthesized by a solvent thermal process at low temperature. During the synthesis, in situ self-formed “cage” of crystallized NaCl confined the growth of α-Fe2O3 nanoparticles in both the precipitation and solvent thermal processes, resulting in the creation of well-crystallized α-Fe2O3 nanoparticles with an average particle size about 4–5 nm and a high-specific surface area of ~162 m2/g. High resolution TEM investigations provided clear evidences of the in situ self-formation of NaCl “cage” during the synthesis and its confinement effect on the growth of α-Fe2O3 nanoparticles. The superior performance of these α-Fe2O3 nanoparticles on the adsorption of arsenite(III) (As) from aqueous environment was demonstrated with both lab-prepared and natural water samples at near neutral pH environment when compared with previously reported removal effects of As(III) by Fe2O3. This unique approach may also be utilized in the synthesis of other ultrafine metal oxide nanoparticles for a broad range of technical applications.  相似文献   

3.
We have investigated the crystal structure of nanosized iron-oxide by X-ray diffraction (XRD), extended X-ray absorption fine structure measurements at the iron K-edge as well as by transmission electron microscopy (TEM). Iron-oxide nanoparticles were produced by thermal treatment of horse spleen ferritin molecules. The structure of these particles was compared to α-Fe2O3 and γ-Fe2O3 nanopowder references. The thermal treatment of a submonolayer film of ferritin molecules results in pure γ-Fe2O3 nanoparticles, while for films above a certain thickness α-Fe2O3 and γ-Fe2O3 coexist, exhibiting two different crystallite sizes. TEM shows a characteristic particle diameter of ~7 nm for γ-Fe2O3 resulting from thermal treatment of monolayers, consistent with the crystallite size of the γ-phase as obtained from XRD measurements on multi-layered samples. XRD shows the α-Fe2O3 phase to be characterized by a crystallite size of ~34 nm.  相似文献   

4.
Nearly monodisperse hollow α-Fe2O3 microspheres composed of nanoparticles have been successfully synthesized through a facile template-free hydrothermal method. The products were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. It is shown that the hollow α-Fe2O3 microspheres consist of well-aligned α-Fe2O3 nanoparticles with a mean diameter of about 15 nm. This facile reaction route presents an efficient method for mass production of monodisperse hollow magnetic nanomaterials. The final α-Fe2O3 microspheres exhibit special magnetic properties with a small remnant magnetization of 0.09 emu g−1 and a high coercivity of 1121.67 Oe at room temperature.  相似文献   

5.
We report the synthesis of single-crystalline α-Fe2O3 nanoflakes from a simple Fe–air reaction within the temperatures range of 260–400 °C. The nanoflakes synthesized at the lowest temperature (260 °C) in this work show an ultra-sharp morphology: 5–10 nm in thickness, 1–2 μm in length, 20 nm in base-width and around 5 nm at the tips; successfully demonstrate the promising electron field emission properties of a large-scaled α-Fe2O3 nanostructure film and exhibit the potential applications as future field-emission (FE) electron sources and displays (FEDs). The formation and growth of α-Fe2O3 nanostructures were discussed based on the surface diffusion mechanism. PACS 79.60.Jv; 79.70.+q; 77.84.Bw  相似文献   

6.
Monodisperse α-Fe2O3 microspheres have been selectively synthesized through a facile hydrothermal method without the assistance of any surfactant, employing FeCl3·6H2O and NH4NaHPO4 as initial materials. The products were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. α-Fe2O3 microspheres with average size about 250 nm were constructed by single crystalline nanoparticles with average diameter about 15 nm. The investigation on the evolution formation revealed that growth temperature was critical to control the assembly of the fresh formed nanocrystallites, and the microsphere formation was proved to be the Ostwald ripening process by tracking the structures of the products at different growth temperature. α-Fe2O3 microspheres showed a weak ferromagnetic behavior with a remanent magnetization of 0.208 emu g−1 and a coercivity of 1,034.27 Oe at room temperature.  相似文献   

7.
The formation of amyloid aggregates by association of peptides into ordered structures is hallmark of certain neurodegenerative disorders. Exploring the effect of specific nanoparticles on the formation of amyloid fibrils may contribute toward a mechanistic understanding of the aggregation processes, leading to design nanoparticles that modulate the formation of toxic amyloid plaques. Uniform maghemite (γ-Fe2O3) magnetic nanoparticles, containing fluorescein covalently encapsulated within (F-γ-Fe2O3), were prepared. These F-γ-Fe2O3 nanoparticles of 14.0 ± 4.0 nm were then coated with human serum albumin (HSA) via a precipitation process. Covalent conjugation of the spacer arm succinimidyl polyethylene glycol succinimidyl ester (NHS–PEG–NHS) to the F-γ-Fe2O3~HSA nanoparticles was then accomplished by interacting the primary amine groups of the HSA coating with excess NHS–PEG–NHS molecules. Covalent conjugation of the peptides amyloid-β 40 (Aβ40) or Leu-Pro-Phe-Phe-Asp (LPFFD) onto the surface of the former fluorescent nanoparticles was then performed, by interacting the terminal activated NHS groups of the PEG derivatized F-γ-Fe2O3~HSA nanoparticles with primary amino groups of the peptides. Kinetics of the Aβ40 fibrillation process in the absence and presence of varying concentrations of the Aβ40 or LPFFD conjugated nanoparticles were also elucidated. The non-peptide conjugated fluorescent nanoparticles do not affect the Aβ40 fibrillation process significantly. However, the Aβ40-conjugated nanoparticles (F-γ-Fe2O3~HSA–PEG–Aβ40) accelerate the fibrillation process while the LPFFD-conjugated nanoparticles (F-γ-Fe2O3~HSA–PEG–LPFFD) inhibit it. By applying MRI and fluorescence imaging techniques simultaneously these bioactive fluorescent magnetic iron oxide nanoparticles can be used as an efficient tool to study and control the Aβ40 amyloid fibril formation process.  相似文献   

8.
The production of low-dimensional nanoparticles (NPs) with appropriate surface modification has attracted increasing attention in biological, biochemical, and environmental applications including chemical sensing, photocatalytic degradation, separation, and purification of toxic molecules from the matrices. In this study, iron oxide NPs have been prepared by hydrothermal method using ferric chloride and urea in aqueous medium under alkaline condition (pH 9 ~ 10). As-grown low-dimensional NPs have been characterized by UV–vis spectroscopy, FT-IR, X-ray diffraction, Field emission scanning electron microscopy, Raman spectroscopy, High-resolution Transmission electron microscopy, and Electron Diffraction System. The uniformity of the NPs size was measured by the scanning electron microscopy, while the single phase of the nanocrystalline β-Fe2O3 was characterized using powder X-ray diffraction technique. As-grown NPs were extensively applied for the photocatalytic degradation of acridine orange (AO) and electrochemical sensing of ammonia in liquid phase. Almost 50% photo-catalytic degradation with AO was observed in the presence of UV sources (250 W) with NPs. β-Fe2O3 NP-coated gold electrodes (GE, surface area 0.0216 cm2) have enhanced ammonia-sensing performances in their electrical response (IV characterization) for detecting ammonia in liquid phase. The performances of chemical sensor were investigated, and the results exhibited that the sensitivity, stability, and reproducibility of the sensor improved significantly using β-Fe2O3 NPs on GE surface. The sensitivity was approximately 0.5305 ± 0.02 μAcm−2mM−1, with a detection limit of 21.8 ± 0.1 μM, based on a signal/noise ratio of 3 with short response time.  相似文献   

9.
In this study, the synthesis of monophasic nanocrystalline zinc ferrite (ZnFe2O4) was achieved by controlling the thermal decomposition conditions of a zinc–iron tartrate precursor method. Differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), Fe2+ content analysis, transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) techniques were used to investigate the effect of heat treatment conditions on the calcined powders. The thermal decomposition of the precursor led to an intermediate phase formation of ZnO, Fe3O4, and γ-Fe2O3. It was found that the Fe3O4 → γ-Fe2O3 oxidation reaction is the key step in producing monophasic nanosized ZnFe2O4. The monophasic nanoparticles of ZnFe2O4 can be obtained when the precursor is heat treated under a low temperature (300–400 °C) and long residence time (4 h) process that can prompt the Fe3O4 oxidation and prevent the formation of α-Fe2O3.  相似文献   

10.
The internal morphology and magnetic properties of layer-by-layer assembled nanofilms of polyaniline (PANI) and maghemite (γ-Fe2O3—7.5-nm diameter) were probed with cross-sectional transmission electron microscopy (TEM) and magnetization measurements (magnetic hysteresis loops, magnetization using zero-field cooled/field-cooled protocols, and ac magnetic susceptibility). Additionally, simulations of the as-produced samples were performed to assess both the nanofilm’s morphology and the corresponding magnetic signatures using the cell dynamic system (CDS) approach and Monte Carlo (MC) through the standard Metropolis algorithm, respectively. Fine control of the film thickness and average maghemite particle–particle within this magnetic structure was accomplished by varying the number of bilayers (PANI/γ-Fe2O3) deposited onto silicon substrates or through changing the concentration of the maghemite particles suspended within the colloidal dispersion sample used for film fabrication. PANI/γ-Fe2O3 nanofilms comprising 5, 10, 25 and 50 deposited bilayers displayed, respectively, blocking temperatures (T B) of 30, 35, 39 and 40 K and effective energy barriers (ΔE/k B) of 1.0 × 103, 2.3 × 103, 2.8 × 103 and 2.9 × 103 K. Simulation of magnetic nanofilms using the CDS model provided the internal morphology to carry on MC simulation of the magnetic properties of the system taking into account the particle–particle dipolar interaction. The simulated (using CDS) surface–surface particle distance of 0.5, 2.5 and 4.5 nm was obtained for nanofilms with thicknesses of 36.0, 33.9 and 27.1 nm, respectively. The simulated (using MC) T B values were 33.0, 30.2 and 29.5 K for nanofilms with thicknesses of 36.0, 33.9 and 27.1 nm, respectively. We found the experimental (TEM and magnetic measurements) and the simulated data (CDS and MC) in very good agreement, falling within the same range and displaying the same systematic trend. Our findings open up new perspectives for fabrication of magnetic nanofilms with pre-established (simulated) morphology and magnetic properties.  相似文献   

11.
CdS/α-Fe2O3 hierarchical nanostructures, where the CdS nanorods grow irregularly on the side surface of α-Fe2O3 nanorods, were synthesized via a three-step process. The diameters and lengths of CdS nanorods can be tuned by changing the ethylenediamine (EDA) and Cd ion concentrations. The magnetic investigations by superconducting quantum interference device indicate that the hierarchical nanostructures have an Morin transition at lower temperature (230 K) than that of the single bulk α-Fe2O3 materials (263 K). Importantly, the hierarchical nanostructures exhibit weakly ferromagnetic characteristics at 300 K. A sharp peak assigned to the surface trap induced emission are observed in room temperature PL spectra. Combining with the optoelectronic properties of CdS, the CdS/α-Fe2O3 hierarchical nanostructures may be used as multi-functional materials for optoelectronic and magnetic devices. Supported by the National Natural Science Foundation of China (Grant Nos. 50772025 and 50872159), the Ministry of Science and Technology of China (Grant No. 2008DFR20420), the China Postdoctoral Science Foundation (Grant Nos. 20060400042 and 200801044), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F200828), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070217002), and the Innovation Foundation of Harbin City (Grant No. RC2006QN017016)  相似文献   

12.
This study reports a facile hydrothermal method for the synthesis of monodispersed hematite (α-Fe2O3) nanodiscs under mild conditions. The method has features such as no use of surfactants, no toxic precursors, and no requirements of high-temperature decomposition of iron precursors in non-polar solvents. By this method, α-Fe2O3 nanodiscs were achieved with diameter of 50 ± 10 nm and thickness of ~6.5 nm by the hydrolysis of ferric chloride. The particle characteristics (e.g., shape, size, and distribution) and functional properties (e.g., magnetic and catalytic properties) were investigated by various advanced techniques, including TEM, AFM, XRD, BET, and SQUID. Such nanodiscs were proved to show unique magnetic properties, i.e., superparamagnetic property at a low temperature (e.g., 20 K) but ferromagnetic property at a room temperature (~300 K). They also exhibit low-temperature (<623 K) catalytic activity in CO oxidation because of extremely clean surfaces due to non-involvement of surfactants, compared with those spheres and ellipsoids capped by PVP molecules.  相似文献   

13.
Polyaniline (PANI)–TiO2 nanocomposites possessing both nano and microscale structures were prepared through a facile hydrothermal route in the presence of PANI. The nanopapilla particles were characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectra, X-ray diffraction, FTIR spectra, UV–Vis spectroscopy, and N2 adsorption analysis, etc. The results show that the composites possess both nano and microscale structures. The TiO2 nanorods are dispersed on PANI with one end fixed to the surface. The photocatalytic properties of the powders were verified by the photodegradation of gaseous acetone under UV (λ = 254 nm) and visible-light irradiation (λ > 400 nm). In fact, the photocatalytic effects exhibited by the composite particles were superior to that of pure TiO2 and P25 samples. This excellent behavior is attributed to the structural features of PANI–TiO2 microspheres and the synergistic effect between PANI and TiO2 which facilitates a larger amount of surface active sites. This in turn causes a faster charge separation and slower charge recombination which results in a more efficient decomposition of gaseous pollutants.  相似文献   

14.
A complex study of the hydrogen reduction of nanosized iron hydroxide Fe(OH)3 at 400°C was performed. It was shown that, during the reduction of Fe(OH)3 to iron metal α-Fe, intermediate compounds such as Fe(OH)2, α-FeOOH, β-FeOOH, γ-FeOOH, δ-FeOOH, and FeO are formed along with stable iron oxides α-Fe2O3, γ-Fe2O3, and Fe3O4. A scheme of chemical and structural transformations that occur in the reduction of nanosized Fe(OH)3 is presented. The scheme takes into account the possibility of the bifurcation mechanism of reaction development.  相似文献   

15.
Nanocomposites composed of multi-wall carbon nanotubes (MWNTs) and Fe3O4 nanoparticles were fabricated using solvothermal method. Transmission and scanning electron microscopy, energy dispersive spectroscopy, and X-ray powder diffraction measurements confirmed that these mulberry-like Fe3O4 microparticles which were combined with the MWNTs in a random pattern are constructed with tiny nanocrystallites (12 nm in average diameter). The magnetic properties of the Fe3O4/MWNTs nanocomposites were measured using a vibrating sample magnetometer. Results showed that the Fe3O4/MWNTs nanocomposites exhibited superparamagnetism at room temperature and possessed a lower saturation magnetization (around 27.6 emu/g) than that of the pure Fe3O4 nanoparticles (around 33.7 emu/g). The Fe3O4/MWNTs nanocomposites have potential applications in engineering and medicine.  相似文献   

16.
A novel magnetic nanocomposite of γ-Fe2O3 nanoparticles decorated multiwalls carbon nanotubes (MWNTs) was synthesized for the first time by a simple chemistry precipitation method. The structure and morphology of the composite was characterized by X-ray powder diffractometer (XRD), TEM and EDS. The results of XRD and TEM show that γ-Fe2O3 nanoparticles is immobilized on the side wall of the MWNTs, the size of most of the particle is <5 nm.The EDS analysis shows that the atomic ratio of Fe to O is 2:3. The magnetization curves of the MWNTs and γ-Fe2O3 decorated MWNTs were measured by VSM at room temperature, which indicate that the saturated magnetization (Ms), remanence (Mr) and coercivity (Hc) of the decorated MWNTs are much larger than those of MWNTs, and the decorated MWNTs exhibit well magnetic properties.  相似文献   

17.
Metastable α-Fe2O3-MO2(M: Sn and Ti) solid solutions can be synthesized by mechanical alloying. The alloy formation, microstructure, and gas sensitive properties of mechanically milled α-Fe2O3-SnO2 materials are discussed. Tin ions in α-Fe2O3 are found to occupy the empty octahedral holes in the α-Fe2O3 lattice. This interstitial model can also describe the structure of α-Fe2O3-TiO2solid solutions. Finally, a correlation of gas sensitive properties with microstructure of α-Fe2O3-SnO2 materials is presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
In the present study, titania-doped (Ti-doped) W18O49 nanorods have been prepared using a modified plasma arc gas condensation technique. Characterizations by field-emission gun scanning electron microscopy, X-ray powder diffraction, high-resolution transmission electron microscopy and high-resolution X-ray photoelectron spectroscopy indicate that the as-prepared nanorods with a single-crystalline monoclinic W18O49 phase are of 20–100 nm in diameter and several micrometers in length. The Raman peaks of the Ti-doped W18O49 nanorods show a red-shift Raman peaks, and an additional green-emission peak at 497 nm is observed in the photoluminescence (PL) spectrum compared to pure W18O49 nanorods. Field-emission (FE) measurements reveal that the turn-on (E to) and threshold (E thr) voltages of the Ti-doped W18O49 nanorods are 2.2 and 3.4 V/μm, respectively. A vapor–solid process that does not involve the use of catalyst is proposed for the nanorod growth mechanism. Experimental results show that the additional defects resulting from titania doping are responsible for the enhancement of the optical and FE properties of the pure W18O49 nanorods.  相似文献   

19.
Hybrid polypyrrole (PPy)/α-Fe2O3 nanocomposite films were fabricated by spin coating on a glass substrate. X-Ray diffraction analysis revealed the crystalline structure of α-Fe2O3 nanostructures and the nanocomposites. The broad PPy peak weakened in intensity as the α-Fe2O3 content increased in PPy/α-Fe2O3 nanocomposites. Characteristic Fourier-transform IR peaks for pure PPy shifted to higher wavenumbers on addition of α-Fe2O3 to PPy/α-Fe2O3 nanocomposites. This can be attributed to better conjugation and interactions between PPy and α-Fe2O3 nanoparticles. Field-emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy images of the nanocomposites reveal a uniform distribution of α-Fe2O3 nanoparticles in the PPy matrix. UV-vis absorption spectroscopy revealed a blue shift from λmax= 441 nm for PPy to λmax= 392 nm for PPy/α-Fe2O3, reflecting strong interactions between PPy and α-Fe2O3 nanoparticles. The room-temperature dc electrical conductivity increased from 4.33×10−9 to 1.81×10−8 S/cm as the α-Fe2O3 nanoparticle content increased from 10 to 50 wt.% in PPy/α-Fe2O3 nanocomposites.  相似文献   

20.
The effect of thickness of TiO2 coating on synergistic photocatalytic activity of TiO2 (anatase)/α-Fe2O3/glass thin films as photocatalysts for degradation of Escherichia coli bacteria in a low-concentration H2O2 solution and under visible light irradiation was investigated. Nanograined α-Fe2O3 films with optical band-gap of 2.06 eV were fabricated by post-annealing of thermal evaporated iron oxide thin films at 400 °C in air. Increase in thickness of the Fe2O3 thin film (here, up to 200 nm) resulted in a slight reduction of the optical band-gap energy and an increase in the photoinactivation of the bacteria. Sol-gel TiO2 coatings were deposited on the α-Fe2O3 (200 nm)/glass films, and then, they were annealed at 400 °C in air for crystallization of the TiO2 and formation of TiO2/Fe2O3 heterojunction. For the TiO2 coatings with thicknesses ≤50 nm, the antibacterial activity of the TiO2/α-Fe2O3 (200 nm) was found to be better than the activity of the bare α-Fe2O3 film. The optimum thickness of the TiO2 coating was found to be 10 nm, resulting in about 70 and 250% improvement in visible light photo-induced antibacterial activity of the TiO2/α-Fe2O3 thin film as compared to the corresponding activity of the bare α-Fe2O3 and TiO2 thin films, respectively. The improvement in the photoinactivation of bacteria on surface of TiO2/α-Fe2O3 was assigned to formation of Ti-O-Fe bond at the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号