首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion mobility spectrometry (IMS) is a well-known method for detecting hazardous compounds in air. Most ion mobility spectrometers use a radioactive source to provide electrons with high energy (5–50 keV) to ionize analytes in a series of chemical reactions. Instead of a radioactive source, we use a non-radioactive electron gun which can be operated in pulsed mode. Thus a delay time between ionization and ion extraction can be introduced which offers the possibility to use the signal decay characteristic of substances as a further discrimination parameter. The influence of voltages supplied to the reaction region and to the electron gun on signal intensities and decay times will be investigated in order to obtain further insight into the dependence of this signal decay on different experimental parameters and correspondingly into the underlying mechanisms.  相似文献   

2.
Combining matrix-assisted laser desorption/ionization (MALDI) mass spectrometry with ion mobility (IM) results in the fast sorting of biomolecules in complex mixtures along trend lines. In this two-dimensional (2D) analysis of biological families, lipids, peptides, and nucleotides are separated from each other by differences in their ion mobility drift times in a timescale of hundreds of microseconds. Molecular ions of similar chemical type fall along trend lines when plotted in 2D plots of ion mobility drift time as a function of m/z. In this study, MALDI-IM MS is used to analyze species from all of the major phospholipid classes. Complex samples, including tissue extracts and sections, were probed to demonstrate the effects that radyl chain length, degree of unsaturation, and class/head group have upon an ion’s cross section in the gas phase. We illustrate how these changes can be used to identify individual lipid species in complex mixtures, as well as the effects of cationization on ion cross section and ionization efficiency.  相似文献   

3.
This paper reports the first investigation of electron capture ion mobility spectrometry as a detection method for capillary gas chromatography. In previous work with negative ion mobility detection after gas chromatography, the principal reactant ion species were O2? or hydrated O2? due to the presence of oxygen in the drift gas. These molecular reactant ions have a mobility similar to chloride and bromide ions, which are the principal product ions formed by most halogenated organics via dissociative ion-molecule reactions. Oxygenated reactant ions thus interfere with the selective detection of chloride and bromide product ions. A recently described ion mobility detector design efficiently eliminated ambient impurities, including oxygen, from infiltrating the ionization region of the detector; consequently, in the negative mode of operation, the ionization species with N2 drift gas were thermalized electrons. Thermalized electrons have a high mobility and their drift time occupies a region of the ion mobility spectrum not occupied by chloride, bromide, or other product ions. The result was improved selectivity for halogenated organics which ionize by dissociative electron capture. This was demonstrated by the selective detection of 4,4′-dibromobiphenyl from the components of a polychlorinated biphenyl mixture (Aroclor 1248).  相似文献   

4.
Small concentrations of toxic compounds in atmospheric air have often to be measured selectively by portable equipment. Ion mobility spectrometers are instruments used to monitor explosives, drugs and chemical warfare agents. First responders also need to detect hazardous gases released in accidents while transporting them or in their production in chemical plants. Not all toxic gases can be measured with the time of flight ion mobility spectrometer at concentrations required by safety standards applied in workplace areas. The time of flight ion mobility spectrometer is based on an inlet membrane, an ionization region, a shutter grid and the drift region with a detector in the drift tube. The separation of ions is due to the different mobility of the ions when they are exposed to a weak electric field (E = 200…300 V/cm). High field asymmetric waveform spectrometry or differential mobility spectrometry is a relative new ion mobility spectrometer technology. The separation is due to the different mobilities of the ions in the high (E = 15000...30000 V/cm) and the weak electric fields. About 30 different toxic industrial chemical compounds were analyzed with both systems under comparable conditions. For selected examples the detection limits, the selectivity and the identification capabilities of the two systems for some of the main compounds will be discussed.  相似文献   

5.
An ion mobility spectrometer that can easily be installed as an intermediate component between a commercial triple-quadrupole mass spectrometer and its original atmospheric pressure ionization (API) sources was developed. The curtain gas from the mass spectrometer is also used as the ion mobility spectrometer drift gas. The design of the ion mobility spectrometer allows reasonably fast installation (about 1 h), and thus the ion mobility spectrometer can be considered as an accessory of the mass spectrometer. The ion mobility spectrometer module can also be used as an independently operated device when equipped with a Faraday cup detector. The drift tube of the ion mobility spectrometer module consists of inlet, desolvation, drift, and extraction regions. The desolvation, drift and extraction regions are separated by ion gates. The inlet region has the shape of a stainless steel cup equipped with a small orifice. Ion mobility spectrometer drift gas is introduced through a curtain gas line from an original flange of the mass spectrometer. After passing through the drift tube, the drift gas serves as a curtain gas for the ion-sampling orifice of the ion mobility spectrometer before entering the ion source. Counterflow of the drift gas improves evaporation of the solvent from the electrosprayed sample. Drift gas is pumped away from the ion source through the original exhaust orifice of the ion source. Initial characterization of the ion mobility spectrometer device includes determination of resolving power values for a selected set of test compounds, separation of a simple mixture, and comparison of the sensitivity of the electrospray ionization ion mobility spectrometry/mass spectrometry (ESI-IMS/MS) mode with that of the ESI-MS mode. A resolving power of 80 was measured for 2,6-di-tert-butylpyridine in a 333 V/cm drift field at room temperature and with a 0.2 ms ion gate opening time. The resolving power was shown to be dependent on drift gas flow rate for all studied ion gate opening times. Resolving power improved as the drift gas flow increased, e.g. at a 0.5 ms gate opening time, a resolving power of 31 was obtained with a 0.65 L/min flow rate and 47 with a 1.3 L/min flow rate for tetrabutylammonium iodide. The measured limits of detection with ESI-MS and with ESI-IMS/MS modes were similar, demonstrating that signal losses in the IMS device are minimal when it is operated in a continuous flow mode. Based on these preliminary results, the IMS/MS instrument is anticipated to have potential for fast screening analysis that can be applied, for example, in environmental and drug analysis.  相似文献   

6.
A novel surface ionization source for ion mobility spectrometer   总被引:1,自引:0,他引:1  
A surface ionization (SI) source is designed and prepared for ion mobility spectrometer (IMS). The source acts not only as an emitter but also an ion injector which can inject ions periodically into the drift region of drift tube. Using the dual-role source, the dimension of the drift tube can be decreased and the circuit for high voltage can be simplified efficiently. The IMS with the SI source has a response range of ∼4 orders of magnitude and a good reproducibility to tri-ethylamine. Compared with radioactive ionization (RI), the ultra-short time for ion injection and the zero level base line of ion mobility spectrum are characteristics of the surface ionization.  相似文献   

7.
For the ionization of gas mixtures, several ionization sources can be coupled to an ion mobility spectrometer. Radioactive sources, e.g. beta radiators like 63Ni and 3H, are the most commonly used ionization sources. However, due to legal restrictions radioactive ionization sources are not applicable in certain applications. Non-radioactive alternatives are corona discharge ionization sources or photoionization sources. However, using an electron gun allows regulation of ion production rate, ionization time and recombination time by simply changing the operating parameters, which can be utilized to enhance the analytical performance of ion mobility spectrometers. In this work, the impact of an ionization source parameter variation on the ion mobility spectrum is demonstrated. Increasing the ion production rate, the amount of the generated ions increases leading to higher signal intensity while the noise remains constant. Thus, the signal to noise ratio can be increased, leading to better limits of detection. In a next step, the ion production rate is kept constant while the influence of ionization time on the ion mobility spectrum is investigated. It is shown, that varying the ionization time allows the determination of the reaction rate constants as additional information to the ion mobility. Furthermore, we show the prevention of discrimination processes by using short ionization times combined with an increased ion production rate. Thus, the limit of detection for benzene in presence of toluene is improved. Additionally, it is shown that using ion-ion recombination leads to the detection of the ion species with the highest proton affinity at higher recombination times while the low proton affine ions already recombined. Thus, the measurement of the ion mobility spectra at a defined recombination time allows a suppression of disturbing low proton affine substances.  相似文献   

8.
In this work, ion mobility spectrometry (IMS) function as a detector and another dimension of separation was coupled with CE to achieve two‐dimensional separation. To improve the performance of hyphenated CE‐IMS instrument, electrospray ionization correlation ion mobility spectrometry is evaluated and compared with traditional signal averaging data acquisition method using tetraalkylammonium bromide compounds. The effect of various parameters on the separation including sample introduction, sheath fluid of CE and drift gas, data acquisition method of IMS were investigated. The experimental result shows that the optimal conditions are as follows: hydrodynamic sample injection method, the electrophoresis voltage is 10 kilo volts, 5 mmol/L ammonium acetate buffer solution containing 80% acetonitrile as both the background electrolyte and the electrospray ionization sheath fluid, the ESI liquid flow rate is 4.5 μL/min, the drift voltage is 10.5 kilo volts, the drift gas temperature is 383 K and the drift gas flow rate is 300 mL/min. Under the above conditions, the mixture standards of seven tetraalkylammoniums can be completely separated within 10 min both by CE and IMS. The linear range was 5–250 μg/mL, with LOD of 0.152, 0.204, 0.277, 0.382, 0.466, 0.623 and 0.892 μg/mL, respectively. Compared with traditional capillary electrophoresis detection methods, the developed CE‐ESI‐IMS method not only provide two sets of qualitative parameters including electrophoresis migration time and ion drift time, ion mobility spectrometer can also provide an additional dimension of separation and could apply to the detection ultra‐violet transparent compounds or none fluorescent compounds.  相似文献   

9.
Rapid screening and identification of drug and other mixtures are possible using a novel ambient pressure high-resolution ion mobility (APIMS) orthogonal reflector time-of-flight mass spectrometer (TOFMS). Departing ions from the APIMS drift tube traversed a pressure interface between the APIMS and TOFMS where they were subjected to numerous gas collisions that could produce selective fragmentation. By increasing the accelerating field in the pressure interface region, the ions generated using water-cooled electrospray ionization (ESI) underwent collision-induced dissociation (CID). Mixtures of ESI ions were separated by APIMS based on their respective size-to-charge (s/z) ratios while CID and analysis of mass-to-charge (m/z) ratios occurred in the pressure interface and TOFMS. Product ions that were formed in this pressure interface region could be readily assigned to precursor ions by matching the mobility drift times. This process was demonstrated by the examination of a mixture of amphetamines and the resulting fragmentation patterns of the mobility-separated precursor ion species [M + H](+).  相似文献   

10.
In electrospray ionization (ESI)-ion mobility spectrometry, continuously generated ions must be desolvated in a first tube before short ion pulses are introduced into a second (drift) tube. Both tubes are separated by an ion-gate. The resolving power of the resulting drift time spectrum is strongly influenced by the design of the ion gate. In the case of the Bradbury-Nielsen gates typically used, an orthogonal field between oppositely charged, parallel wires blocks ions from entering the drift tube. However, the blocking field also distorts the entering ion cloud. One alternative, which eliminates these effects and therefore enables a potentially higher resolving power, is already known for spectrometers with small ionization volumes, where ions are formed between two electrodes and subsequently transferred into the drift tube by a high voltage pulse. Based on this setup, we introduce an alternative ion gate design for liquid samples, named field switching ion gate (FSIG). The continuous flow of ions generated by ESI is desolvated in the first tube and introduced into the space between two electrodes (repeller and transfer electrodes). A third (blocking) electrode prevents the movement of ions into the drift tube in the closed state. Ions are transferred during the open state by pulsing the voltages of the repeller and blocking electrodes. First results demonstrate an increase of the resolving power by 100% without intensity losses and further changes in the spectrometer setup. The parameters of the FSIG, such as electrode voltages and pulse width, are characterized allowing the optimization of the spectrometer’s resolving power.  相似文献   

11.
The ionization pathways and ion mobility were determined for sets of structural isomeric and stereoisomeric non-polar hydrocarbons (saturated and unsaturated cyclic hydrocarbons and aromatic hydrocarbons) using a novel miniature differential mobility spectrometer with atmospheric-pressure photoionization (APPI) to assess how structural and stereochemical differences influence ion formation and ion mobility. The analytical results obtained using the differential mobility spectrometry (DMS) were compared with the reduced mobility values measured using conventional time-of-flight ion mobility spectrometry (IMS) with the same ionization technique.The majority of differences in DMS ion mobility spectra observed among isomeric cyclic hydrocarbons can be explained by the formation of different product ions. Comparable differences in ion formation were also observed using conventional IMS and by investigations using the coupling of ion mobility spectrometry with mass spectrometry (APPI-IMS-MS) and APPI-MS. Using DMS, isomeric aromatic hydrocarbons can in the majority of cases be distinguished by the different behavior of product ions in the strong asymmetric radio frequency (rf) electric field of the drift channel. The different peak position of product ions depending on the electric field amplitude permits the differentiation between most of the investigated isomeric aromatics with a different constitution; this stands in contrast to conventional IMS in which comparable reduced mobility values were detected for the isomeric aromatic compounds.  相似文献   

12.
The peak width, shape and position are heavily affected by ion–molecule reactions which are inevitable in the drift region of an ion mobility spectrometer. This paper discusses three major types of reactions occurring in drift tube and their effects on the shape and displacement of the peaks. The first reaction is the dissociation of dimer ions during their flight time creating a tail for the monomer peak. The second one is the reaction between the monomer ions with molecules of the same kind in the drift region. Such a process shifts the peak to longer drift times and causes a tail for the peak as well as its broadening. The last one is the reaction of ions with molecules of different types such as dopant which may exist in the drift region. Depending on the reactivity of the ions, this kind of reaction displaces the peaks differently so that peak-to-peak resolution is lost or, in some cases, gained.  相似文献   

13.
A Laser Ion Mobility Spectrometer has been set up and trace detection experiments have been performed. We find that laser ionization almost selectively ionizes aromatic hydrocarbons. Aliphatic hydrocarbons are only laser-ionized in case these contain conjugated double bonds. As, in contrast to radioactive ion mobility spectrometry, background air constituents and air contaminants cannot be ionized, drift spectra are inherently simple and easily interpretable. We show that a laser ion mobility spectrometer can be operated in two basically different modes, either using tunable or fixed-frequency laser sources. In the tunable laser mode, aromatic hydrocarbons can be detected in the positive mode and distinguished from each other on account of their different excitation wavelengths and ion drift times. In the fixed-frequency mode, specially chosen and intentionally admitted aromatic hydrocarbons are laser ionized and the primary ionization is transferred to non-aromatic species by means of atmospheric pressure chemical ionization. In this latter mode of operation nitroglycerin and triacetone triperoxide, two non-aromatic high explosives, could be detected.  相似文献   

14.
Ion mobility spectrometry has become the most successful and widely used technology for the detection of trace levels of nitro-organic explosives on handbags and carry on-luggage in airports throughout the US. The low detection limits are provided by the efficient ionization process, namely, atmospheric pressure chemical ionization (APCI) reactions in negative polarity. An additional level of confidence in a measurement is imparted by characterization of ions for mobilities in weak electric fields of a drift tube at ambient pressure. Findings from over 30 years of investigations into IMS response to these explosives have been collected and assessed to allow a comprehensive view of the APCI reactions characteristic of nitro-organic explosives. Also, the drift tube conditions needed to obtain particular mobility spectra have been summarized. During the past decade, improvements have occurred in IMS on the understanding of reagent gas chemistries, the influence of temperature on ion stability, and sampling methods. In addition, commercial instruments have been refined to provide fast and reliable measurements for on-site detection of explosives. The gas phase ion chemistry of most explosives is mediated by the fragile CONO(2) bonds or the acidity of protons. Thus, M(-) or M.Cl(-) species are found with only a few explosives and loss of NO(2), NO(3) and proton abstraction reactions are common and complicating pathways. However, once ions are formed, they appear to have stabilities on time scales equal to or longer than ion drift times from 5-20 ms. As such, peak shapes in IMS are suitable for high selectivity and sensitivity.  相似文献   

15.
Carbohydrates are an extremely complex group of isomeric molecules that have been difficult to analyze in the gas phase by mass spectrometry because (1) precursor ions and product ions to successive stages of MS(n) are frequently mixtures of isomers, and (2) detailed information about the anomeric configuration and location of specific stereochemical variants of monosaccharides within larger molecules has not been possible to obtain in a general way. Herein, it is demonstrated that gas-phase analyses by direct combination of electrospray ionization, ambient pressure ion mobility spectrometry, and time-of-flight mass spectrometry (ESI-APIMS-TOFMS) provides sufficient resolution to separate different anomeric methyl glycosides and to separate different stereoisomeric methyl glycosides having the same anomeric configuration. Reducing sugars were typically resolved into more than one peak, which might represent separation of cyclic species having different anomeric configurations and/or ring forms. The extent of separation, both with methyl glycosides and reducing sugars, was significantly affected by the nature of the drift gas and by the nature of an adducting metal ion or ion complex. The study demonstrated that ESI-APIMS-TOFMS is a rapid and effective analytical technique for the separation of isomeric methyl glycosides and simple sugars, and can be used to differentiate glycosides having different anomeric configurations.  相似文献   

16.
This instrument combines the capabilities of ion/ion reactions with ion mobility (IM) and time-of-flight (TOF) measurements for conformation studies and top-down analysis of large biomolecules. Ubiquitin ions from either of two electrospray ionization (ESI) sources are stored in a three dimensional (3D) ion trap (IT) and reacted with negative ions from atmospheric sampling glow discharge ionization (ASGDI). The proton transfer reaction products are then separated by IM and analyzed via a TOF mass analyzer. In this way, ubiquitin +7 ions are converted to lower charge states down to +1; the ions in lower charge states tend to be in compact conformations with cross sections down to ~880 Å2. The duration and magnitude of the ion ejection pulse on the IT exit and the entrance voltage on the IM drift tube can affect the measured distribution of conformers for ubiquitin +7 and +6. Alternatively, protein ions are fragmented by collision-induced dissociation (CID) in the IT, followed by ion/ion reactions to reduce the charge states of the CID product ions, thus simplifying assignment of charge states and fragments using the mobility-resolved tandem mass spectrum. Instrument characteristics and the use of a new ion trap controller and software modifications to control the entire instrument are described.  相似文献   

17.
Benzodiazepines are a commonly abused class of drugs; requiring analytical techniques that can separate and detect the drugs in a rapid time period. In this paper, the two-dimensional separation of five benzodiazepines was shown by electrospray ionization (ESI) ion mobility spectrometry (IMS)-mass spectrometry (MS). In this study, both the two dimensions of separation (m/z and mobility) and the high resolution of our IMS instrument enabled confident identification of each of the five benzodiazepines studied. This was a significant improvement over previous IMS studies that could not separate many of the analytes due to low instrumental resolution. The benzodiazepines that contain a hydroxyl group in their molecular structure (lorazepam and oxazepam) were found to form both the protonated molecular ion and dehydration product as predominant ions. Experiments to isolate the parametric reasons for the dehydration ion formation showed that it was not the result of corona discharge processes or the potential applied to the needle. However, the potential difference between the needle and first drift ring did influence both the relative intensity ratios of the two ions and the ion sensitivity.  相似文献   

18.
A planar high field asymmetric waveform ion mobility spectrometer (PFAIMS) with a micro-machined drift tube was characterized as a detector for capillary gas chromatography. The performance of the PFAIMS was compared directly to that of a flame ionization detector (FID) for the separation of a ketone mixture from butanone to decanone. Effluent from the column was continuously sampled by the detector and mobility scans could be obtained throughout the chromatographic analysis providing chemical inforrmation in mobility scans orthogonal to retention time. Limits of detection were approximately I ng for measurement of positive ions and were comparable or slightly better than those for the FID. Direct comparison of calibration curves for the FAIMS and the FID was possible over four orders of magnitude with a semi-log plot. The concentration dependence of the PFAIMS mobility scans showed the dependence between ion intensity and ion clustering, evident in other mobility spectrometers and atmospheric pressure ionization technologies. Ions were identified using mass spectrometry as the protonated monomer and the proton bound dimer of the ketones. Residence time for column effluent in the PFAIMS was calculated as approximately 1 ms and a 36% increase in extra-column broadening versus the FID occurred with the PFAIMS.  相似文献   

19.
This paper demonstrates a novel operating mode of an ion mobility detector (IMD) for obtaining both qualitative and quantitative data after capillary gas chromatographic separation of 5,5′-disubstituted barbiturates. Using a recently developed time dispersive Fourier transform method for ion mobility spectrometry, complete ion mobility spectra could be obtained for each component in the chromatogram. This type of spectra can be used for providing qualitative information on unknown compounds or for selecting the proper detector conditions needed when operating in the continuous mobility monitoring mode. In this study each of the five barbiturates investigated produced a Fourier transformed ion mobility spectrum containing one major product ion. When drift times corresponding to those of the product ions measured in the FT mode were monitored continuously, selective chromatographic detection of the barbiturates was achieved. In one case even isomers could be differentiated based on mobility characteristics.  相似文献   

20.
A new and fast method for measuring the diffusion coefficients of binary gas mixtures using ion mobility spectrometry (IMS) has been developed. In this method, the sample is injected as a short pulse into the flowing drift gas, forming a Gaussian concentration profile inside the drift region. This Gaussian cloud is irradiated with a fast moving swarm of electrons to create negative ions. The flash of electrons is so short that the negative ions do not move much during the exposure time. The ions then drift toward the detector, where they are collected. The collected ion signal pattern reflects the spatial distribution of the sample inside the cloud at the time of exposure. This is repeated in intervals of 300-400 ms to monitor the spatial spreading of the molecules in the drift region. Consecutive IMS spectra show the evolution of the cloud over time. The collected spectra are fit to Gaussian functions to extract diffusion coefficients. Using this method, the diffusion coefficient of O(2), CHCl(3), and C(2)H(2)Cl(2) were measured, and the results are in good agreement with the previously reported experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号