首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study looks at the synthesis of Fe nanoparticles using a borohydride reduction of metal salts in the presence of carboxyl and methoxyl terminated polyethylene glycol (PEG). As the PEG concentration is varied, there is a corresponding increase in the Fe content of samples as determined by Mossbauer spectroscopy. Particle sizes are between 70 and 300 nm as indicated by transmission electron microscopy. As the polymer concentration is increased the overall saturation magnetization of the coated nanoparticles initially increases due to the increased iron content with a maximum of 70 emu/g for nanoparticles with the largest Fe content. The magnetization then begins to decrease as the polymer concentration begins to contribute to a significant volume fraction of the sample. All samples are magnetically soft with high remanence as indicated by SQUID magnetometry measurements.  相似文献   

2.
3.
Polystyrene/silica nanoparticles were prepared by radical polymerization of silica nanoparticles possessing vinyl groups and styrene with benzoyl peroxide. The resulting vinyl silica nanoparticles, polystyrene/silica nanoparticles were characterized by means of Fourier transformation infrared spectroscopy, scanning electron microscopy and UV-vis absorption spectroscopy. The results indicated that polystyrene had been successfully grafted onto vinyl silica nanoparticles via covalent bond. The morphological structure of polystyrene/silica nanoparticles film, investigated by scanning electron microscopy, showed a characteristic rough structure. Surface wetting properties of the polystyrene/silica nanoparticles film were evaluated by measuring water contact angle and the sliding angle using a contact angle goniometer, which were measured to be 159° and 2°, respectively. The excellent superhydrophobic property enlarges potential applications of the superhydrophobic surfaces.  相似文献   

4.
Thermodynamic properties and phase change behaviors of polyethylene glycol (PEG) in blends with cellulose (CELL) were found to be completely different than those of pure PEG. When the CELL fraction of the blend was larger than 5 wt%, PEG within the blend did not melt into a liquid state, as was the case with pure PEG, even at a temperature over 50°C above its melting point. Instead of fusion, a solid-solid phase transition was found in these PEG-CELL blends with an enthalpy as large as 100 J/g.  相似文献   

5.
Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles were obtained by a facile protocol and thoroughly characterized. Superparamagnetic iron oxide nanoparticles synthesized using a modified forced hydrolysis method were functionalized with polyethylene glycol silane (PEG silane), precipitated and dried. These functionalized particles are dispersable in a range of solvents and concentrations depending on the desired properties. Examples of tunable properties are magnetic behavior, optical and magneto-optical response, thermal features and rheological behavior. As such, PEG silane functionalized particles represent a platform for the development of new materials that have broad applicability in e.g. biomedical, industrial or photonic environments. Magnetic, optical, magneto-optical, thermal and rheological properties of several ferrofluids based on PEG coated particles with different concentrations of particles dispersed in low molecular mass polyethylene glycol were investigated, establishing the applicability of such materials.  相似文献   

6.
ZnO nanoparticles and ZnO encapsulated with polyethylene glycol (PEG) was synthesized using zinc acetate as a precursor at low temperature and characterized by different techniques. The influence of the types of solvent, synthesis parameters, and PEG encapsulation on the crystallization, the surface morphology, and the luminescent properties of ZnO nanoparticles prepared by the sol–gel process were investigated. The influence of different addition molar masses of the PEG during the synthesis on the ZnO emission peaks was systematically monitored. The crystallinity, the surface morphology, and the photoluminescence (PL) properties of ZnO depended highly on the synthesis process and PEG encapsulation. X-ray diffraction (XRD) spectra of ZnO nanoparticles show that all the peaks corresponding to the various planes of wurtzite ZnO indicate the formation of a single phase. The absorption edges of these ZnO nanoparticles are shifted by additions of the PEG polymer. The photoluminescence (PL) characterization of the ZnO nanostructures exhibited a broad emission in the visible range with maximum peak at 450 and/or 560 nm.  相似文献   

7.
To understand the intermolecular interactions in binary mixtures of pentanol with polyethylene glycol diacrylate and polyethylene glycol dimethacrylate respectively, absolute viscosity and refractive index have been measured over the whole composition range, at 298.15 K, 303.15 K and 313.15 K, under atmospheric pressure. Molar refraction and interaction parameter have been calculated. The experimental data have been used to evaluate deviation in viscosity, deviation in refractive index and excess Gibb's free energy of activation for viscous flow, and the results have been fitted to Redlich-Kister polynomial equation.  相似文献   

8.
In this investigation the influence of 24 kHz ultrasound wave upon the corrosion of carbon steel in 3N sulphuric acid at 25 degrees C in the presence of inhibitors was studied. The inhibitors were polyethylene glycols (PEG) in different molecular weights (from 400 up to 10,000 gmol(-1)). The polarization and impedance spectroscopy results show the effectiveness of polyethylene glycols on the cavitation-corrosion inhibition of carbon steel in sulphuric acid. The inhibition efficiency is increased with increasing mean molecular weight of polymer and its concentration. The weight loss method has confirmed these results. The analysis of SEM images indicates that these inhibitors prevent propagation of pits on the eroded specimen. The inhibition effect of PEGs can be attributed to cushioning effect of adsorbed polymers on cavitation phenomenon produced by bubble collapse.  相似文献   

9.
The cationic dyes 9-aminoacridine (9AA) and safranine (Sf) were entrapped into silica spheres of about 0.2 μm diameter prepared by modified Stöber method. The fluorescent materials are investigated by steady-state and time-resolved emission, in addition of confocal fluorescence microscopy. Silica particles containing 9-aminoacridine (SP9AA) and safranine (SPSf) or both dyes (SPSf9AA) are emissive particles. When both dyes are present in the same particle but loaded in sequential stages 9AA emission is quenched as a consequence of energy transfer from 9AA (donor) to Sf (acceptor). This result suggests that particle growing processes where the acceptor is incorporated first into the core do not prevent donor/acceptor pairs to be close due to an overlay of the concentration gradients of both dyes in a radial core-shell like distribution.  相似文献   

10.
The behavior of a fluidized bed of electroneutral silica nanopowder under the influence of a cross-flow electric field is studied. Nanoparticle agglomerates experience an electrophoretic force as a consequence of being naturally charged, which leads to electrophoretic deposition at static and low frequency fields. In contrast, fluidization is enhanced at intermediate field frequencies, which can be attributed to agglomerate forced flow.  相似文献   

11.
Polyethylene glycol (PEG) molecules act as a reducing and stabilizing agent in the formation of silver nanoparticles. PEG undergoes thermal oxidative degradation at temperatures over 70 °C in the presence of oxygen. Here, we studied how the temperature and an oxidizing atmosphere could affect the synthesis of silver nanoparticles with PEG. We tested different AgNO3 concentrations for nanoparticles syntheses using PEG of low molecular weight, at 60 and 100 °C. At the higher temperature, the reducing action of PEG increased and the effect of PEG/Ag+ ratio on nanoparticles aggregation changed. These results suggest that different synthesis mechanisms operate at 60 and 100 °C. Thus, at 60 °C the reduction of silver ions can occur through the oxidation of the hydroxyl groups of PEG, as has been previously reported. We propose that the thermal oxidative degradation of PEG at 100 °C increases the number of both, functional groups and molecules that can reduce silver ions and stabilize silver nanoparticles. This degradation process could explain the enhancement of PEG reducing action observed by other authors when they increase the reaction temperature or use a PEG of higher molecular weight  相似文献   

12.
Thin films of polyethylene glycol (PEG) of average molecular weight, 1400 amu, were deposited by both matrix-assisted pulsed laser evaporation (MAPLE) and pulsed laser deposition (PLD). The deposition was carried out in vacuum (∼10-6 Torr) with an ArF (λ=193 nm) laser at a fluence between 150 and 300 mJ/cm2. Films were deposited on NaCl plates, Si(111) wafers, and glass slides. The physiochemical properties of the films are compared via Fourier transform infrared spectroscopy (FTIR), electrospray ionization (ESI) mass spectrometry, and matrix-assisted laser desorption and ionization (MALDI) time-of-flight mass spectrometry. The results show that the MAPLE films nearly identically resemble the starting material, whereas the PLD films do not. These results are discussed within the context of biomedical applications such as drug delivery coatings and in vivo applications where there is a need for transfer of polymeric coatings of PEG without significant chemical modification. Received: 2 March 2001 / Accepted: 5 March 2001 / Published online: 23 May 2001  相似文献   

13.
Nanoparticles of zirconium oxide (ZrO2) were synthesized by infiltration of a zirconia precursor (ZrOCl2·8H2O) into a SBA-15 mesoporous silica mold using a wet-impregnation technique. X-ray diffractometry and high-resolution transmission electron microscopy show formation of stable ZrO2 nanoparticles inside the silica pores after a thermal treatment at 550 °C. Subsequent leaching out of the silica template by NaOH resulted in well-dispersed ZrO2 nanoparticles with an average diameter of ~4 nm. The formed single crystal nanoparticles are faceted with 110 surfaces termination suggesting it to be the preferred growth orientation. A growth model of these nanoparticles is also suggested.  相似文献   

14.
The NiFe2O4 nanoparticles were prepared by the combustion method and these nanoparticles were successfully coated with polyethylene glycol (PEG) for the possible biomedical applications such as magnetic resonance imaging, drug delivery, tissue repair, magnetic fluid hyperthermia etc. The structural and magnetic characterizations of NiFe2O4 nanoparticles were carried out by x-ray diffraction and vibrating sample magnetometry techniques, respectively. The morphology of the uncoated and coated nanoparticles was studied by scanning electron microscopy. The existence of PEG layer on NiFe2O4 nanoparticles was confirmed by fourier transform infrared spectroscopy technique.  相似文献   

15.
Iron oxide nanoparticles hosted in silica aerogels   总被引:1,自引:0,他引:1  
The investigated hybrid materials consist of non-agglomerated iron oxide particles hosted in silica aerogels. The composite material can be produced as a monolith, in any shape, and with different dilutions of the iron oxide phase. Two sol–gel chemistry routes have been followed: a solution of Fe(NO3)3·9H2O has been added either to the silica gel or to the initial sol; in the latter, the iron salt provided the water required for the gel polymerisation. To obtain monolithic aerogels, the gels were dried by hypercritical solvent evacuation. On the other hand, some gels were dried by slow and controlled evaporation of the solvent, resulting in xerogels. Several heat treatments have been performed and the iron oxide particle phase, growth mechanism and crystallinity have been analysed. The composite materials were characterised by means of X-ray diffraction, M?ssbauer spectrometry and superconducting quantum interference device magnetometry. It was observed that the particle sizes (in the nanometre range) and the thermal stability of the iron oxide phases strongly depend on the preparation method that determines the microstructure of the host material. Consequently, the magnetic properties of the nanoparticles can be controlled via synthesis conditions, matrix properties and thermal treatments. Received: 5 March 2001 / Accepted: 16 June 2001 / Published online: 30 August 2001  相似文献   

16.
Hydration water can even decide the physicochemical properties of hydrated organic molecules. However, by far the most important hydration number for organic molecules, in particular polyethylene glycol which we are concerned with here, usually suffers from a large discrepancy. Here, we provide a scheme for accurate and unambiguous quantification of the hydration number based on the universal water-content dependence of glass transition temperature for aqueous solutions, testified by experimental results for polyethylene glycol molecules of a molar weight ranging from 200 to 20000.Moreover, we also clarify the fundamental misunderstanding lying in the definition and quantification of hydration water for PEG molecules in the literature, therein the hydration number for PEG in water-rich solutions has been determined at a critical concentration, across which the properties of the solution display obviously distinct water-content dependence.  相似文献   

17.
A detailed study of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) substrates (membranes and films) is presented. The process consists of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. Influence of the solution and plasma parameters on the process efficiency evaluated in terms of amount of grafted polymer, coverage uniformity and substrates wettability, are investigated. The plasma-induced graft-polymerization of PEGA is then followed by sample weighting, water droplet adsorption time and contact angle measurements, attenuated total reflection infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in phosphate buffer saline (PBS) at 37 °C. Results clearly indicates that plasma-induced graft-polymerization of PEGA is a practical methodology for anti-fouling surface modification of materials.  相似文献   

18.
Poly(ethylene terephthalate) (PET) based nanocomposites containing hydrophilic (i.e. Aerosil 200 or Aerosil TT 600) or hydrophobic (i.e. Aerosil R 972) nano-silica were prepared by melt compounding. Influence of nano-silica type on surface properties of the resultant nanocomposites was investigated by the use of Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), contact angle measurement (CAM), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). The possible interaction between nano-silica particles and PET functional groups at bulk and surface were elucidated by transmission FTIR and FTIR-ATR spectroscopy, respectively. AFM studies of the resultant nanocomposites showed increased surface roughness compared to pure PET. Contact angle measurements of the resultant PET composites demonstrated that the wettability of such composites depends on surface treatment of the particular nano-silica particles used. SEM images illustrated that hydrophilic nano-silica particles tended to migrate to the surface of the PET matrix.  相似文献   

19.
Toxicity of amorphous silica nanoparticles in mouse keratinocytes   总被引:1,自引:0,他引:1  
The present study was designed to examine the uptake, localization, and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24 h to various concentrations of amorphous silica nanoparticles in homogeneous suspensions of average size distribution (30, 48, 118, and 535 nm SiO2) and then assessed for uptake and biochemical changes. Results of transmission electron microscopy revealed all sizes of silica were taken up into the cells and localized into the cytoplasm. The lactate dehydrogenase (LDH) assay shows LDH leakage was dose- and size-dependent with exposure to 30 and 48 nm nanoparticles. However, no LDH leakage was observed for either 118 or 535 nm nanoparticles. The mitochondrial viability assay (MTT) showed significant toxicity for 30 and 48 nm at high concentrations (100 μg/mL) compared to the 118 and 535 nm particles. Further studies were carried out to investigate if cellular reduced GSH and mitochondria membrane potential are involved in the mechanism of SiO2 toxicity. The redox potential of cells (GSH) was reduced significantly at concentrations of 50, 100, and 200 μg/mL at 30 nm nanoparticle exposures. However, silica nanoparticles larger than 30 nm showed no changes in GSH levels. Reactive oxygen species (ROS) formation did not show any significant change between controls and the exposed cells. In summary, amorphous silica nanoparticles below 100 nm induced cytotoxicity suggest size of the particles is critical to produce biological effects.  相似文献   

20.
Increasing interest has been drawn to the studies of magnetic fluids due to their multiple applications from industry to medicine. However, further exploration is still required for the techniques of preparing satisfying, convenient and stable magnetic fluids. We explored characteristics of magnetic liquids prepared by employing co-precipitation techniques of hydrochloric acid (HCl) and polyethylene glycol (PEG), and the functions of HCl and PEG in the magnetic liquid. According to the improved technique, after preparing Fe3O4 by a co-precipitation method, hydrochloric acid and PEG2000 react with magnetic particles at a certain temperature to generate the anticipated magnetic nanoparticles. The process could be under an air atmosphere rather than a N2 atmosphere. Compared with traditional techniques, the magnetic nanoparticles prepared by this method have smaller size, better dispersion and stability, with the average hydrodynamic diameter adjustable between 8 and 50 nm. This study revealed that reduction of nanoparticles size is not mainly due to a [Cl] coating over the magnetic nanoparticles, but that HCl reacts with Fe3O4 particles after being heated. Meanwhile, PEG can stabilize or coat Fe3O4 nanoparticles as a dispersing and stabilizing agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号