首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nickel nanoparticles were fabricated by ablating a bulk Ni target with pulsed 337-nm laser radiation in distilled water. Transmission electron microscope images of the removed material show spherical particles with two size scales: tens of nm and hundreds of nm. Phase explosion and Rayleigh–Plateau hydrodynamic instability are suggested as being responsible for this distribution. An X-ray diffraction pattern of the ablated material demonstrates the presence of both nickel and nickel oxide.  相似文献   

2.
Laser ablation (LA) of a Au foil immersed in chloroform and/or in diluted 5,10,15,20-tetrakis-4-pyridylporphine (TPyP) chloroform solutions was carried out using 1064 nm nanosecond laser pulses. The products were characterized by UV-visible-NIR optical extinction and IR absorption measurements, Raman spectroscopy and transmission electron microscopy (TEM). They were found to be strongly influenced by the convergence of the incident laser beam and delivered energy per pulse. Our results show that with highly focused laser beam chloroform underwent photochemical reactions and no nanoparticles with observable surface plasmon extinction (SPE) band were formed whereas at particular focusing conditions Au nanoparticles with the SPE band typical for Au organosols were created. Au organosols in pure chloroform showed a limited stability, the SPE band disappeared in a few hours after the preparation. When a small amount of TPyP was present in the course of LA both the efficiency of Au nanoparticles formation and the stability of the resulting organosols were improved. A possible mechanism of LA of the Au target in chloroform and in diluted TPyP chloroform solutions is discussed.  相似文献   

3.
4.
Pulsed laser ablation of Ag and Au targets, immersed in double-distilled water is used to synthesize metallic nanoparticles (NPs). The targets are irradiated for 20 min by laser pulses at different wavelengths—the fundamental and the second harmonic (SHG) (λ = 1064 and 532 nm, respectively) of a Nd:YAG laser system. The ablation process is performed at a repetition rate of 10 Hz and with pulse duration of 15 ns. Two boundary values of the laser fluence for each wavelength under the experimental conditions chosen were used—it varied from several J/cm2 to tens of J/cm2. Only as-prepared samples were measured not later than two hours after fabrication. The NPs shape and size distribution were evaluated from transmission electron microscopy (TEM) images. The suspensions obtained were investigated by optical transmission spectroscopy in the near UV and in the visible region in order to get information about these parameters. Spherical shape of the NPs at the low laser fluence and appearance of aggregation and building of nanowires at the SHG and high laser fluence was seen. Dependence of the mean particle size at the SHG on the laser fluence was established. Comments on the results obtained have been also presented.  相似文献   

5.
This work presents a method, based on measurements of the optical extinction spectra, to determine the size of spherical gold nanoparticles produced using the femtosecond laser ablation process in deionized water. By using an improved theoretical model that modifies the contribution of the free electrons to the dielectric function introducing a size-dependent term, it is possible to fit the full experimental extinction spectrum considering a certain size distribution. Additionally, in order to obtain complementary measurements of the size distribution, TEM analysis was performed. The results obtained showed that the predominant nanoparticle size distribution ranges from 1 to 11 nm in terms of radii. An optical extinction measurement together with an appropriate theoretical model based on Mie’s theory represents a simple, low-cost, fast and easy method to describe a multimodal size distribution of spherical gold nanoparticles.  相似文献   

6.
Fabrication of Eu3+-doped ZnO nanoparticles by laser ablation in liquid medium is reported. Sintered disks made of mixed powders of ZnO and Eu2O3 are used for targets, and surfactant of sodium dodecyl sulfate or LiOH is included in solution. Round-shaped nanoparticles with the diameter of 5??30?nm are synthesized. When the ZnO host is photoexcited, broad green photoluminescence (PL) of oxygen vacancies in the ZnO host as well as red PL of Eu3+ is observed at room temperature. The red PL peak of Eu3+ included in the ZnO host lattice is different from that of the source material of Eu2O3. Energy transfer from the ZnO host to Eu3+ is demonstrated in site-selectively excited PL spectra and its excitation spectra. This result shows that the liquid-phase laser ablation is useful for doping active centers into nanoparticles.  相似文献   

7.
The paper presents the results of theoretical and experimental researches of the analysis of nanopowder ZnO and ZnO-based structures formation mechanisms by means of pulse laser reactive technology (λ = 1.06 μm, τ = 10−7 to 10−5 s). The developed 2D model combines non-stationary heat transfer and fluid motion along with the calculated profile of surface deformation. The characteristics of the dispersive and chemical compositions and structural parameters of the synthesized nanopowder together with the influence of the energy of laser impulse evaporation, its duration and gas pressure in the reaction chamber have been studied using X-ray diffractrometry (XRD), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM). Particle size distribution analysis of ZnO has shown that the majority of them range from 5 to 60 nm in size. The photoluminescence emission spectra of the initial ZnO nanopowder at room temperature have been identified.  相似文献   

8.
We synthesized Au and ZnO nanoparticles by laser ablation in distilled water with the superposition of an ultrasonic wave. The effect of the ultrasonic wave was examined on the optical absorbance of colloidal solution and the crystallinity of synthesized nanoparticles. The absorbance of colloidal solution was enhanced by the ultrasonic wave, indicating more efficient production rate of nanoparticles. In addition, the ultrasonic wave enhanced the crystallinity of synthesized nanoparticles. These enhancements are attributed to the fact that the ultrasonic wave drives the repetitive formations and collapses of cavitation bubbles.  相似文献   

9.
石墨烯和纳米颗粒的复合材料具有新颖的光学和电学特性,被广泛应用于信息传感、光电转换、医学诊断等领域,具有十分广阔的发展前景.虽然石墨烯拥有优异的光电性能,可以实现对随机激光性质的调控,但目前实现特殊结构的石墨烯与金属纳米结构的复合过程复杂繁琐,利用石墨烯有效降低随机激光阈值仍存在挑战.本文利用便捷的化学还原及吸附法制备Au/石墨烯结构,以染料DCJTB为增益介质,使用旋涂法制备了均匀的薄膜样品;研究对比Au纳米颗粒和Au/石墨烯结构随机激光特性,分析了石墨烯的作用机理.研究结果表明,Au/石墨烯复合材料透射峰与增益介质的光致发光光谱峰最为接近,对于染料分子的能级迁跃起到了促进作用.在相同的增益介质中,石墨烯的加入不仅使得光子在无序介质中散射频次增加,促进了增益效果,而且增强了Au纳米颗粒表面的等离子体共振效应.二者相互协同,展现出了优异的随机激光特性,阈值降低至2.8μJ/mm~2;对样品重复测量可得样品的激射重复性较强、品质较高.本研究对促进随机激光应用、实现高性能的光电器件起到了一定的推动作用.  相似文献   

10.
A rapid and simple approach to fabricate large-area surface-enhanced Raman scattering-active(SERS-active) substrates is reported.The substrates are fabricated by using femtosecond laser(fs-laser) direct writing on Silicon wafers,followed by thin-film coating of metal such as gold.The substrates are demonstrated to exhibit signal homogeneity and good enhancement ability for SERS.The maximum enhancement factor(EF) up to 3×10 7 of such SERS substrates for rhodamine 6G(R6G) at 785 nm excitation wavelength was measured.This technique could demonstrate a functional microchip with SERS capability of signal homogeneity,high sensitivity and chemical stability.  相似文献   

11.
The terahertz resonant metal-mesh filters were fabricated using the laser direct writing technique. UV picosecond laser was employed to cut matrixes of cross-shaped holes in stainless steel foil and molybdenum layer deposited on polyimide substrate. Different laser processing strategies were developed: holes were cut through in the metal foil and the molybdenum film was removed from the polyimide by laser ablation. Band-pass filters with a different center frequency were designed and fabricated. The regular shape, smoothness of edges and sharpness of corners of the cross-shaped holes in the metal were the main attributes for quality assessment for the laser ablation process. Spectral characteristics of the filters, determined by the mesh period, cross-arm length, and its width, were investigated by terahertz time-domain spectroscopy and conventional space-domain Fourier transform spectroscopy. Experimental data were supported by three-dimensional finite-difference time-domain simulations.  相似文献   

12.
Size-tuned copper oxide nanoparticles with sizes of 9, 12, and 15 nm were fabricated by laser ablation and on-line size selection using a differential mobility analyzer at a gas pressure of 666 Pa. The dependence of the particle properties on the in situ annealing temperatures and selection sizes was investigated. The crystalline phases of the nanoparticles fabricated at temperatures below 973 K were assigned to monoclinic cupric oxide (CuO) which converted into cubic cuprous oxide (Cu2O) when the annealing temperature was above 1,173 K. This indicates that the crystalline phases can be easily controlled by changing the annealing temperature. TEM images confirmed that well-crystallized and well-dispersed CuO and Cu2O nanoparticles with narrow size distributions were obtained using this method. This fabrication process is useful and promising for the future investigation of the intrinsic size-dependent properties of CuO and Cu2O.  相似文献   

13.
Silver and gold thin films were deposited by pulsed laser ablation in a controlled Ar atmosphere at pressures between 10 and 100 Pa. Different morphologies, ranging from isolated nanoparticle arrays up to nanostructured thin films were observed. Fast imaging of the plasma allowed deducing the expansion dynamics of the ablated plume. Plasma velocity and volume were used together with the measured average ablated mass per pulse as input parameters in a model to estimate the average size of nanoparticles grown in the plume. The nanoparticle size is expected to decrease from 4 nm down to 1 nm with decreasing Ar pressure between 100 and 10 Pa: this was confirmed by transmission electron micrographs which indicate a reduced dispersion of particle size over narrow size ranges. The production of substrates for surface enhanced Raman scattering whose performances critically depend on nanoparticle size, shape, and structure is discussed.  相似文献   

14.
Si nanowires (NWs) were fabricated successfully by laser ablation using Au as catalyst. Si wafers were used as the collector. The diameters of Si NWs ranged from 20 to 150 nm. Different forms of Si NWs were observed at different local sites inside a furnace: Si NWs with a high aspect ratio of length to diameter, Si NWs with defects and Si NWs with Au-containing nanoparticles being embedded. Especially, a nano-particle embedded Si NW is a new nanostructure that is observed for the first time. PACS 81.07.-b; 81.07.Bc; 81.16.-c; 81.20.-n  相似文献   

15.
In order to improve the morphology of microchannels fabricated by femtosecond laser ablation, the thermal process was introduced into the post-treatment processing. It was found that the thermal process cannot only decrease the roughness but also the width and depth of the microchannel. The change rates of width, depth, and roughness of the microchannel increase with processing temperature. When we prolong the time of constant temperature, the change rate of the width decreases at the beginning, and then it tends to be stable. However,the change rates of depth and roughness increase, and then they tend to be stable. In this Letter, we discuss the reasons of the above phenomena.  相似文献   

16.
In this work, we report on the electrical characterization of Ge nanoparticles (NPs) produced by pulsed laser deposition (PLD) at room temperature (RT) in Ar gas inert atmosphere using a shadowed off‐axis deposition geometry. Our results show that functional thin films of crystalline Ge NPs embedded between thin alumina films can be obtained on p‐type Si(100) substrates following a low temperature and short rapid thermal annealing (RTA) treatment. Metal–oxide–semiconductor (MOS) structures with and without Ge NPs embedded in the alumina were prepared for the electrical measurements. The results indicate a strong memory effect at relatively low programming voltages (±4 V) due to the presence of Ge NPs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We show that conventional pulsed laser ablation (PLA) of Si and Ge targets in inert buffer gases is an efficient method of nanocluster synthesis. From a photoluminescence study of Si and Ge nanoclusters produced by PLA we have demonstrated the possibility of tuning the luminescence band from the near infrared to the near ultraviolet regions. The stabilization of the properties of Si nanoclusters by reactive (H2 gas) PLA synthesis was proved by photoluminescence measurements. Finally, we report a photoluminescence study of gas-suspended Ge nanoclusters during their preparation. They exhibit a broad luminescence spectrum extended from UV to the blue-green region and modulated by a molecule-like structure. We propose an interpretation of the vibronic structure involving Ge-O-Ge vibrations at the surface of photo-excited clusters. To the best of our knowledge, we report here the first observation of vibrational effects from gas-suspended Ge nanoclusters.  相似文献   

18.
XeF excimer laser-induced melting and recrystallization dynamics of amorphous germanium are investigated using time-resolved optical reflection and transmission measurements with a nanosecond time resolution, field-emission scanning electron microscopy, and micro-Raman spectroscopy. It is found that the disc-shaped grain with a diameter of approximately 0.8 μm is located in the complete melting regime with a melt phase duration of approximately 141–200 ns. The significant change of transmissivity is a key phenomenon revealing the excessive excimer laser fluence during excimer laser crystallization by in-situ optical measurements. Differences between the melting and recrystallization phenomenon for Si and Ge thin films are also discussed.  相似文献   

19.
20.
A study of indium nanoparticles prepared by two laser ablation techniques is reported. The suspensions of indium nanoparticles were prepared using the laser ablation of bulk indium in liquids. The prepared suspensions of indium nanoparticles were analyzed by the X-ray fluorescence spectroscopy and absorption spectroscopy. The position of the surface plasmon resonance of In-containing suspensions (350 nm) was consistent with the estimations taking into account the average size of In nanoparticles (43 nm) measured using the X-ray fluorescence spectroscopy. The nonlinear optical parameters of indium nanoparticles-containing liquids were studied by the z-scan technique using a picosecond Nd:YAG laser. We compare the laser ablation in liquids with the laser ablation of indium in vacuum at the tight and weak focusing conditions of a Ti:sapphire laser and analyze the 60 nm indium nanoparticles synthesized in the latter case. PACS 42.65.An; 42.65.Hw; 42.65.Jx; 61.46.Df; 78.67.Bf  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号