首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphinated polymer‐incarcerated (PI) Pd catalysts were prepared by immobilization of palladium with phosphinated polymers by using the PI method. The phosphinated PI Pd catalysts showed good catalytic activity without externally added phosphine ligands in the amination of aryl halides for C N bond‐forming reactions, as well as in Suzuki–Miyaura and Sonogashira coupling. No leaching of palladium from the immobilized Pd was observed by fluorescence X‐ray analysis. Furthermore, it was found that immobilization of Pd by the PI process facilitated the suppression of poisoning of the metal by amines. These effects can be ascribed to stabilization of the catalyst by both the phosphine moieties and the benzene rings in the swollen polymer support. The phosphinated PI Pd catalysts could also be recovered by simple filtration and reused several times without leaching of palladium in both the amination and Suzuki–Miyaura coupling reactions.  相似文献   

2.
[reaction: see text]. Polymer-incarcerated (PI) palladium catalyst was practically prepared from inexpensive Pd(II) salts and a polystyrene-based copolymer under reducing conditions. Remarkable effects of alkali metal salts on the palladium loading were observed. PI Pd thus prepared showed high catalytic activity in Mizoroki-Heck reactions and Suzuki-Miyaura couplings with a range of substrates including an aryl chloride. In all cases, the Pd catalyst was recovered quantitatively without leaching, and reused several times without significant loss of activity.  相似文献   

3.
[reaction: see text] Suzuki-Miyaura coupling using a highly efficient and reusable polymer-incarcerated palladium (PI Pd) is described. Various coupling reactions proceeded smoothly using PI Pd with phosphine ligands, and the catalyst could be recovered by simple filtration and reused several times without loss of activity.  相似文献   

4.
A new method named "the polymer incarcerated (PI) method" for preparing a heterogeneous palladium catalyst has been developed. The method is operationally simple, and the Pd catalyst prepared (PI Pd) is highly active for hydrogenation, carbon-carbon, and carbon-oxygen bond-forming reactions. Remarkable points are that the activity of PI Pd is higher than that of homogeneous Pd catalysts and that PI Pd is recovered by simple filtration and reused several times without loss of activity. The catalyst is expected to replace many heterogeneous palladium catalysts, especially Pd/C, which is often used in academia and industry, but recovery of which is difficult.  相似文献   

5.
We have developed a polymer-incarcerated bimetallic Au-Pd nanocluster and boron as a catalyst for the sequential oxidation-addition reaction of 1,3-dicarbonyl compounds with allylic alcohols. The desired tandem reaction products were obtained in good to excellent yields under mild conditions with broad substrate scope. In the course of our studies, we discovered that the excess reducing agent, sodium borohydride, reacts with the polymer backbone to generate an immobilized tetravalent boron catalyst for the Michael reaction. In addition, we found bimetallic Au-Pd nanoclusters to be particularly effective for the aerobic oxidation of allylic alcohols under base- and water-free conditions. The ability to conduct the reaction under relatively neutral and anhydrous conditions proved to be key in maintaining good catalyst activity during recovery and reuse of the catalyst. Structural characterization (STEM, EDS, SEM, and N(2) absorption/desorption isotherm) of the newly prepared PI/CB-Au/Pd/B was performed and compared to PI/CB-Au/Pd. We found that while boron was important for the Michael addition reaction, it was found to alter the structural profile of the polymer-carbon black composite material to negatively affect the allylic oxidation reaction.  相似文献   

6.
无配体Pd/LDH-F催化剂在Heck和Suzuki反应中的应用   总被引:1,自引:0,他引:1  
 以氟离子插层的水滑石LDH-F为载体,用逐滴浸渍法制备了新型Pd/LDH-F催化剂,并用其催化溴代芳烃的Heck和Suzuki偶联反应. 用X射线衍射表征了催化剂的晶相,以等离子体发射光谱测定了溶剂中钯的流失量. 结果表明,对于Heck反应,在无配体存在和低钯用量(Pd/溴代芳烃摩尔比为0.001)的情况下, Pd/LDH-F的催化性能优于其它载体负载的Pd催化剂,显示出很高的催化活性和选择性. 在140 ℃和12 h的条件下, Pd/LDH-F催化溴苯与苯乙烯Heck反应产物的收率可达86%, 反应后催化剂经过分离,可循环使用四次其催化活性基本不变. 在DMF/水摩尔比为0.5的混合溶剂中,在室温和3 h 的条件下, Pd/LDH-F (Pd/溴代芳烃摩尔比为0.005)催化溴苯与苯基硼酸盐的Suzuki反应中,目标产物收率为99%.  相似文献   

7.
Three generations of bidentate phosphinated Pd(II) dendrimers are efficient catalysts in the absence of copper co-catalyst for the Sonogashira reaction and are, with two cyclohexyl substituents on the phosphorus atoms, recovered by precipitation and re-used.  相似文献   

8.
Heterocyclic carbene‐Pd complex was anchored onto the mesoporous silica MCM‐41 which exhibits high catalytic activity in Heck reaction under phosphine free reaction conditions for the reaction of iodo/bromoarenes with olefinic compounds such as butyl acrylate, isopropyl acrylate and styrene. This catalytic system also showed high activity for Sonogashira coupling reaction of various aryl halides under copper, phosphine and solvent‐free reaction conditions. The air and thermally stable catalyst were reused several times without significant loss of its activity. High efficiency of the catalyst along with its recycling ability and the rather low Pd‐loading demonstrated in both Heck and Sonogashira coupling reactions are the merits of the presented catalyst system.  相似文献   

9.
The guanidine‐functionalized resin‐supported Pd(0) catalyst [GDR·Pd(0)] is highly active in Heck reaction of aryl bromides with acrylic acid or styrene without the need to exclude air. The catalyst can be recycled at least 9 times without significant loss of activity in N‐methyl‐2‐pyrrolidone at 140 °C. The Heck reaction proceeds homogeneously with dissolved palladium species and the dissolved active palladium species can redeposit onto the surface of catalyst in the reaction. The XRD peak shifting of Pd phases in the catalyst provides the evidence for the re‐deposition of the active palladium species.  相似文献   

10.
A new polystyrene‐anchored Pd(II) pyridine complex is synthesized and characterized. This Pd(II) pyridine complex behaves as a very efficient heterogeneous catalyst in the Heck reaction of methyl acrylate with aryl halides and the Sonogashira reaction of terminal alkynes with aryl halides in water. Furthermore, the catalyst shows good thermal stability and recyclability. This polymer‐supported Pd(II) catalyst could easily be recovered by simple filtration of the reaction mixture and reused for more than five consecutive trials without a significant loss in its catalytic activity.  相似文献   

11.
In this paper, a highly active, air‐ and moisture‐stable and easily recoverable magnetic nanoparticles tethered mesoionic carbene palladium (II) complex (MNPs‐MIC‐Pd) as nanomagnetic catalyst was successfully synthesized by a simplistic multistep synthesis under aerobic conditions using commercially available inexpensive chemicals for the first time. The synthesized MNPs‐MIC‐Pd nanomagnetic catalyst was in‐depth characterized by numerous physicochemical techniques such as FT‐IR, ICP‐AES, FESEM, EDS, TEM, p‐XRD, XPS, TGA and BET surface area analysis. The prepared MNPs‐MIC‐Pd nanomagnetic catalyst was used to catalyze the Suzuki–Miyaura and Mizoroki–Heck cross‐coupling reactions and exhibited excellent catalytic activity for various substrates under mild reaction conditions. Moreover, MNPs‐MIC‐Pd nanomagnetic catalyst could be easily and rapidly recovered by applying an external magnet. The recovered MNPs‐MIC‐Pd nanomagnetic catalyst exhibited very good catalytic activity up to ten times in Suzuki–Miyaura and five times in Mizoroki–Heck cross‐coupling reactions without considerable loss of its catalytic activity. However, MNPs‐MIC‐Pd nanomagnetic catalyst shows notable advantages such as heterogeneous nature, efficient catalytic activity, mild reaction conditions, easy magnetic work up and recyclability.  相似文献   

12.
《Comptes Rendus Chimie》2015,18(6):636-643
Pd supported on diethylenetriamine (DETA) modified single-walled carbon nanotubes (SWCNT-DETA/Pd) hybrid materials were fabricated for the first time. The prepared heterogeneous catalyst was characterized by XRD, FTIR, SEM, TGA, and TEM. The catalytic activity of the prepared catalyst was investigated by employing the Suzuki–Miyaura coupling reaction as a model reaction. A series of biphenyl compounds were synthesized through the Suzuki–Miyaura reaction using SWCNT-DETA/Pd2+ as a catalyst. The yields of the products were in the range from 80% to 98%. The catalyst can be readily recovered and reused at least for seven consecutive cycles without significant loss of its catalytic activity.  相似文献   

13.
A new polystyrene anchored Pd(II) azo complex has been synthesized and characterized. The present Pd(II) azo complex behaves as a very efficient heterogeneous catalyst in the Suzuki coupling and Sonogashira coupling reaction in water medium. Aryl halides, coupled with phenylboronic acids (Suzuki-Miyaura reaction) or terminal alkyne (Sonogashira reaction), smoothly afford the corresponding cross-coupling products in excellent yields (83-100% yield for Suzuki reaction and 68-96% yield for Sonogashira reaction of aryl halides) under phosphine-free reaction conditions in the presence of polystyrene anchored Pd(II) azo complex catalyst in water medium. Furthermore, the catalyst has shown good thermal stability and recyclability. This polymer-supported Pd(II) catalyst could be easily recovered by simple filtration of the reaction mixture and reused for more than six consecutive trials without a significant loss of its catalytic activity.  相似文献   

14.
钯基纳米材料是甲酸电氧化反应的优良催化剂.本工作制备了两个系列钯基催化剂,并考察了聚苯胺对钯上甲酸电氧化反应的助催化作用.一种是以聚苯胺为基底,在其表面电沉积钯纳米粒子,制得nPANI/Pd催化剂(n表示聚合苯胺的循环数);另一种是直接在商业Pd/C催化剂表面电聚合苯胺,制得Pd/C/nPANI催化剂.结果显示,聚苯胺单独存在时对甲酸电氧化反应没有催化活性,但其可对钯上甲酸电氧化反应呈现明显的促进作用,且促进作用与聚苯胺的厚度(聚合循环数)密切相关.在两个系列催化剂中,15PANI/Pd和Pd/C/20PANI显示出最高的催化性能.15PANI/Pd中钯的质量比催化活性是纯钯催化剂的7.5倍; Pd/C/20PANI中钯的质量比催化活性和本征催化活性分别是商业Pd/C催化剂的2.3和3.3倍.钯催化性能的提升与聚苯胺和钯纳米粒子间的电子效应有关.  相似文献   

15.
A nano tetraimine Pd(0) complex catalyst was successfully used as an efficient heterogeneous catalyst for the phosphine‐free palladium‐catalysed Suzuki coupling reaction in water at 80 °C. This nano tetraimine Pd(0) complex was also used for copper‐free Sonogashira reaction in dimethylformamide at 100 °C. The catalyst was easily recovered from the reaction mixture by centrifugation and reused for at least six cycles without any significant loss in its catalytic activity. Analysis of the reaction mixture using inductively coupled plasma analysis showed that leaching of palladium from the catalyst was negligible. The reactions can be performed efficiently for aryl iodides, bromides and also chlorides. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A novel polymer incarcerated Pd catalyst (PI Pd 7c) was synthesized from amide-containing polymer 6b, and this catalyst was shown to be effective in amidocarbonylation, which is a versatile one-pot method for the preparation of N-acyl-α-amino acids. The reactions proceeded smoothly with a wide variety of substrates, and no leaching of the Pd metal to the reaction mixture was detected.  相似文献   

17.
In this study, we present a simple process to obtain highly dispersed palladium nanoparticles on Vulcan XC-72R carbon support without any protective agent. To obtain high metal loading Pd/C catalyst without any surfactant, we modified the polyol process by employing NH3 species as a mediation to control the reaction pathway to avoid the precipitation of Pd(OH)2, and hence the agglomeration of Pd nanoparticles. The obtained Pd/C sample was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) techniques. The results show that highly dispersed Pd/C catalyst with an average diameter of 3.0 nm could be obtained in this novel process. The activity of formic acid oxidation on this Pd/C catalyst was examined via cyclic voltammetry technique and it is found that the catalytic activity is greatly enhanced due to the reduced particle size and the improved dispersion of palladium nanoparticles on the carbon surface.  相似文献   

18.
A new method was developed for producing a catalyst involving a Pd nanoparticle (NP) embedded in a graphene oxide framework (Pd@GOF) with ordered macro- and mesoporous structures. First, 5,5′-diamino-2,2′-bipyridine was selected as cross-linking for covalent modification of GO nanosheets to prepare a three-dimensional (3D) framework with interlayer spaces in which well-dispersed and ultra-small Pd NPs in situ grew and embedded the framework. The synthesized nanopores 3D Pd@GOF can act as nanoreactors to help the reaction substrates thoroughly come into contact with the surface of Pd NPs, thereby exhibiting high activity toward the Heck reaction, rarely reported concerning Pd NPs supported on one-side functionalized graphene. The Pd@GOF catalyst can be used 10 times without any significant loss in the catalytic activity, confirming the long-term stability of this catalyst. Therefore, the covalently assembled GOF was proposed as a universal platform for hosting noble metal NPs to construct the desired metal@GOF nanocatalyst with improved activity and stability that can be used in a broad range of practical applications.  相似文献   

19.
An efficient heterogeneous palladium catalyst system has been developed based on immobilization of Pd nanoparticles on silica-bonded N-propylpiperazine sodium N-propionate (SBPPSP) substrate. SBPPSP substrate can stabilize the Pd nanoparticles effectively so that it can improve their stability against aggregation. In addition, grafted piperazine species on to the silica backbone prevent the removing of Pd nanoparticles from the substrate surface. Transmission electron microscopy (TEM) of catalyst is shown the size of Pd nanoparticles, also it confirmed by particle size analyzer which shown the average size of 21 nm for Pd. The catalytic activity of these catalysts was investigated in the Sonogashira reaction. The catalyst could be recycled several times without appreciable loss in catalytic activity.  相似文献   

20.
The preparation of supported Pd nanoparticles on Tris (tris(hydroxymethyl)aminomethane)- modified SiO2 gel and their catalytic application in Heck coupling are investigated. The catalyst was characterized using a combination of X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy, and scanning electron microscopy/energy-dispersive X-ray spectroscopy. The supported Pd nanoparticles were found to be a highly active and reusable catalyst for the Heck reaction at a low Pd loading (0.02 mol%) because of stabilization by the Tris moieties. Several reaction parameters, including the type and amount of solvent, base, and temperature, were evaluated. The heterogeneity of the catalytic system was investigated using different approaches, and showed that slight Pd leaching into the reaction solution occurred under the reaction conditions. Despite this metal leaching, the catalyst can be reused seven times without significant loss of its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号