首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
对聚碳酸酯(PC)/苯乙烯 丙烯腈无规共聚物(PSAN)/聚甲基丙烯酸甲酯(PMMA)三元共混物,运用平均场理论,通过二元链段相互作用参数χij计算了其中三个二元对共混组成的相互作用参数χblend,并计算了三元共混体系的spinodal曲线.由此预测了三元共混物相容的条件,讨论了PSAN组成,各聚合物分子量对体系相容性的影响,并进行了实验验证.结果表明通过适当控制共聚组成和分子量,PSAN可以作为PC和PMMA共混物的增容剂,并可以通过仅改变PSAN在共混物中的比例来改善体系的相容性,直至得到完全均相的三元共混物.  相似文献   

2.
We investigated the self-assembling structure of the 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol (PDTS)/n-dibutylphthalate (DBP) system in the parameter space of temperature T and solute concentration Phi(PDTS). Optical microscopic studies revealed that the phase diagram can be divided into four regions. In region I at high T the system is a homogeneous solution. In region II at lower T and low Phi(PDTS), the system still has fluidity but has microgels having spherulitic texture of PDTS crystallites. Regions III and IV at even lower T but higher Phi(PDTS) are in a gel state. In region III, the PDTS forms volume-filling spherulites due to the solid-liquid phase transition of the saturated PDTS solutions. In region IV at the lowest T, both the liquid-liquid phase-separation process and the solid-liquid transition of the PDTS are involved in the self-assembling processes. In this region a bicontinuous phase-separated structure is first formed by liquid-liquid phase separation via spinodal decomposition (SD). The subsequent solid-liquid transition of the PDTS in the PDTS-rich region forms percolating crystalline fibrils rather than spherulites. The formation of the crystalline fibrils pins further growth of the bicontinuous structure via SD.  相似文献   

3.
Various topological phase diagrams of blends of main-chain liquid crystalline polymer (MCLCP) and flexible polymer have been established theoretically in the framework of Matsuyama–Kato theory by combining Flory–Huggins (FH) free energy for isotropic mixing, Maier–Saupe (MS) free energy for nematic ordering in the constituent MCLCP, and free energy pertaining to polymer chain-rigidity. As a scouting study, various phase diagrams of binary flexible polymer blends have been solved self-consistently that reveal a combined lower critical solution temperature (LCST) and upper critical solution temperature (UCST), including an hourglass phase diagram. The calculated phase diagrams exhibit liquidus and solidus lines along with a nematic–isotropic (NI) transition of the constituent MCLCP. Depending on the strengths of the FH interaction parameters and the anisotropic (nematic–nematic) interaction parameters, the self-consistent solution reveals an hourglass type phase diagram overlapping with the NI transition of the constituent MCLCP. Subsequently, thermodynamic parameters estimated from the phase diagrams hitherto established have been employed in the numerical computation to elucidate phase separation dynamics and morphology evolution accompanying thermal-quench induced phase separation of the MCLCP/polymer mixture. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3621-3630, 2006  相似文献   

4.
The present report deals with some results on phase behavior, miscibility and phase separation for several polymer blends casting from solutions. These blends are grouped as the amorphous polymer blends, blends containing a crystalline polymer or two crystalline polymers. The blends of PMMA/PVAc were miscible and underwent phase separation at elevated temperature, exhibited LCST behavior. The benzoylated PPO has both UCST and LCST nature. For the systems composed of crystalline polymer poly(ethylene oxide) and amorphous polyurethane, of two crystalline polymers poly(-caprolactone) and poly[3,3,-bis-(chloromethyl) oxetane], appear a single Tg, indicating these blends are miscible. The interaction parameter B's were determined to be –14 J cm–3, –15 J cm–3 respectively. Phase separation of phenolphthalein poly(ether ether sulfone)/PEO blends were discussed in terms of thermal properties, such as their melting and crystallization behavior.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

5.
Phase behavior in domains of immiscible blends of poly(pentamethylene terephthalate)/poly(ether imide) (PPT/PEI) and poly(hexamethylene terephthalate)/poly(ether imide) (PHT/PEI) were investigated using differential scanning calorimetry (DSC). The measured glass transition temperature (T g) reveals that aryl polyesters dissolve more in the PEI-rich phase than the PEI does in the aryl polyester-rich phase, for both PPT/PEI and PHT/PEI systems. Additionally, optical microscopy supports the conclusion that PPT (or PHT) dissolves more in the PEI-rich phase than PEI does in the PPT-rich (or PHT-rich) phase in the aryl polyester/PEI blends. Furthermore, the Flory–Huggins interaction parameters (χ12) for the PPT/PEI and the PHT/PEI blends were calculated to be 0.12 and 0.17, respectively. For the blend systems comprising of PEI and homologous aryl polyesters, the value of χ12 exhibits a trend of variation with respect to structure of aryl polyesters. For the PPT/PEI and PHT/PEI blends, investigated in this study, value of the polymer–polymer interaction parameter (χ12) between the aryl polyester and the PEI was found to be positive, which increases with the number of methylene moieties in the repeating unit of the aryl polyester, ultimately resulting in phase separation observed.  相似文献   

6.
A thermodynamically self-consistent theory has been developed to establish binary phase diagrams for two-crystalline polymer blends by taking into consideration all interactions including amorphous-amorphous, crystal-amorphous, amorphous-crystal, and crystal-crystal interactions. The present theory basically involves combination of the Flory-Huggins free energy for amorphous-amorphous isotropic mixing and the Landau free energy of polymer solidification (e.g., crystallization) of the crystalline constituents. The self-consistent solution via minimization of the free energy of the mixture affords determination of eutectic, peritectic, and azeotrope phase diagrams involving various coexistence regions such as liquid-liquid, liquid-solid, and solid-solid coexistence regions bound by liquidus and solidus lines. To validate the present theory, the predicted eutectic phase diagrams have been compared with the reported experimental binary phase diagrams of blends such as polyethylene fractions as well as polycaprolactone/trioxane mixtures.  相似文献   

7.
In this work the phase behavior of [6,6]-phenyl C(61)-butyric acid methyl ester (PCBM) blends with different poly(phenylene vinylene) (PPV) samples is investigated by means of standard and modulated temperature differential scanning calorimetry (DSC and MTDSC) and rapid heat-cool calorimetry (RHC). The PPV conjugated polymers include poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV), High T(g)-PPV which is a copolymer, and poly((2-methoxy-5-phenethoxy)-1,4-phenylene vinylene) (MPE-PPV). Comparisons of these PPV:PCBM blends with regioregular poly(3-hexyl thiophene) (P3HT):PCBM blends are made to see the different component miscibilities among different blends. The occurrence of liquid-liquid phase separation in the molten state of MDMO-PPV:PCBM and High T(g)-PPV:PCBM blends is indicated by the coexistence of double glass transitions for blends with a PCBM weight fraction of around 80 wt%. This is in contrast to the P3HT:PCBM blends where no phase separation is observed. Due to its high cooling rate (about 2000 K min(-1)), RHC proves to be a useful tool to investigate the phase separation in PPV:PCBM blends through the glass transition of these crystallizable blends. P3HT is found to have much higher thermal stability than the PPV samples.  相似文献   

8.
9.
This contribution embraces two topics related to phase behavior of polymer blends under equilibrium and nonequilibrium. 1. Polymer blends can undergo different phase changes as liquid-liquid phase transition and crystallization. Coupling of demixing and crystallization may occur at the kinetic stage. This is illustrated by blends of poly(ϵ-caprolactone)(PCL) and poly(styrene-co-acrylonitrile)(SAN). 2. Extension of studies to blend systems under flow is necessary for the better understanding of structure formation in polymer blends outside equilibrium. Polymer molecules will be oriented and stretched when subjected to flow. This may result in flow-induced phenomena. Effects of flow on the phase behavior have been studied only for a few blends, as yet. The primary observation was flow-induced miscibility. Apparent shifts of the phase transition temperatures will be discussed qualitatively in terms of a decoupled mode theory.  相似文献   

10.
The miscibility and phase behavior in blends of PVC with poly(methyl-co-hexyl acrylate)[MHA] and poly(methyl-co-2 ethyl hexyl acrylate)[MEH] were studied. It was found that PVC is miscible with MHA copolymers having a HA volume fraction from 0.30 to 0.92 and MEH copolymers having an EH volume fraction from 0.30 to 0.83 at 100°C. By applying the mean field theory to the phase diagrams of these blend systems, segmental interaction parameters which represent the binary interaction between different monomer units were estimated. The calculated values reflect the fact that the miscibility window observed for PVC/MHA and PVC/MEH blend systems was attributed to the effect of repulsion between different monomer units within the copolymer. To investigate the effect of specific interaction on the miscibility for these blend systems, an attempt was also made to describe the blend interaction parameter as a function of polar group concentration in the acrylate copolymer. The blend interaction parameter values exhibit a u-shaped curve as a function of the weight fraction of C?O group in the copolymer, and the lowest blend interaction parameter value appears at about 0.24 C?O weight fraction.  相似文献   

11.
聚甲基丙烯酸甲酯与聚醋酸乙烯酯共混的红外光谱研究   总被引:2,自引:0,他引:2  
用红外光谱(FTIR)研究了聚甲基丙烯酸甲酯(PMMA)与聚醋酸乙烯酯(PVAc)共混体系相容性,在160℃以上共混体系发生相分离;分相体系与非分相体系的FTIR谱明显不同;共混体系的FTIR谱不能从两统组分红外光谱简单加和得到;结果表明大分子构象发生了变化,PMMA/PVAc体系相容可能是大分子构象熵变所致。  相似文献   

12.
The experimental phase diagrams (cloud point curves) of three series of epoxy/thermoplastic blends, namely, epoxy/polystyrene (PS), epoxy/poly(ether sulfone) (PES), and epoxy/poly(ether imide) (PEI) as a function of molar mass and composition have been analysed from a thermodynamic point of view. A model based on the Flory–Huggins lattice theory considering the concentration dependence of the interaction parameter as predicted by Koningsveld was employed to determine the equilibrium compositions, and concentration and temperature dependent interaction parameters. Binodal, spinodal, and critical point data have been computed and show good agreement with experimental data.  相似文献   

13.
The thermally induced phase separation behavior of hydrogen bonded polymer blends, poly(n-hexyl methacrylate) (PHMA) blended with poly(styrene-co-vinyl phenol) (STVPh) random copolymers having various vinyl phenol contents, was studied by temperature modulated differential scanning calorimetry (TMDSC).The enthalpy of phase separation was determined to be about 0.5 cal g–1 for one of the blends. A phase diagram was constructed from the TMDSC data for one of the blends. The kinetics of phase separation was studied by determining the phase compositions from the glass transition temperatures of quenched samples after phase separation. Subsequently, the phase separated samples were annealed at temperatures below the phase boundary to observe the return to the homogeneous state.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

14.
In this work the intrinsic viscosity of poly(ethylene glycol)/poly(vinyl pyrrolidone) blends in aqueous solutions were measured at 283.1–313.1 K. The expansion factor of polymer chain was calculated by use of the intrinsic viscosities data. The thermodynamic parameters of polymer solution (the entropy of dilution parameter, the heat of dilution parameter, theta temperature, polymer–solvent interaction parameter and second osmotic virial coefficient) were evaluated by temperature dependence of polymer chain expansion factor. The obtained thermodynamic parameters indicate that quality of water was decreased for solutions of poly(ethylene oxide), poly(vinyl pyrrolidone) and poly(ethylene oxide)/poly(vinyl pyrrolidone) blends by increasing temperature. Compatibility of poly(ethylene oxide)/poly(vinyl pyrrolidone) blends were explained in terms of difference between experimental and ideal intrinsic viscosity and solvent–polymer interaction parameter. The results indicate that the poly(ethylene glycol)/poly(vinyl pyrrolidone) blends were incompatible.  相似文献   

15.
The miscibility of tetramethylpolycarbonate (TMPC) blends with styrenic copolymers containing various methacrylates was examined, and the interaction energies between TMPC and methacrylate were evaluated from the phase‐separation temperatures of TMPC/copolymer blends with lattice‐fluid theory combined with a binary interaction model. TMPC formed miscible blends with styrenic copolymers containing less than a certain amount of methacrylate, and these miscible blends always exhibited lower critical solution temperature (LCST)‐type phase behavior. The phase‐separation temperatures of TMPC blends with copolymers such as poly(styrene‐co‐methyl methacrylate), poly(styrene‐co‐ethyl methacrylate), poly(styrene‐con‐propyl methacrylate), and poly(styrene‐co‐phenyl methacrylate) increase with methacrylate content, go through a maximum, and decrease, whereas those of TMPC blends with poly(styrene‐con‐butyl methacrylate) and poly(styrene‐co‐cyclohexyl methacrylate) always decrease. The calculated interaction energy for a copolymer–TMPC pair is negative and increases with the methacrylate content in the copolymer. This would seem to contradict the prediction of the binary interaction model, that systems with more favorable energetic interactions have higher LCSTs. A detailed inspection of lattice‐fluid theory was performed to explain such phase behavior. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1288–1297, 2002  相似文献   

16.
Polymerization-induced phase separation of a polystyrene in various epoxy-amine systems where the amino groups were provided by a monoamine and a diamine mixed in different proportions was thermodynamically studied. A model based on the Flory–Huggins theory extended by Koningsveld and Staverman approach where the interaction parameter was dependent on temperature, composition and conversion, and polydispersity of the components was considered, was used. A general equation for the evolution during polymerization of the epoxy-amine species distributions according to the monoamine–diamine ratio was derived from the Stockmayer distribution. The interaction parameters continuously decreased with conversion. Phase diagrams of the blends were obtained and the critical composition was between 5 and 6 vol.% PS in all blends.  相似文献   

17.
在自洽平均场中计算聚合物宏观相分离体系时,需要将正则系综与巨正则系综结合使用。 通过将正则系综与巨正则系综之间的变量进行转化,只在正则系综下计算即可得到巨正则系综下的相应变量的值,在很大程度上减少了计算量。 本文利用这种简化方法计算了A-b-B两嵌段共聚物与均聚物A在不同均聚物聚合度下随着均聚物含量变化的相图,其结果与巨正则系综下的计算结果相同。 该结果表明,在嵌段共聚物与均聚物的共混体系中,增加嵌段共聚物组成fA或者减小均聚物的聚合度,将有效阻止体系发生宏观相分离。  相似文献   

18.
Ultradrawn ribbons of solution-cast blends of poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) have been prepared by a solid-state coextrusion in a capillary rheometer. An increase of noncrystallizable PMMA in the blends drastically decreased the drawability from a draw ratio of 36 for pure PEO to 5 for a mixture of PEO/PMMA 40/60% by weight. A low crystallinity and depression of melting temperature for PEO were observed with increasing draw. The Flory-Huggins theory for melting temperature depression has been used to derive the binary interaction parameter for these blends.  相似文献   

19.
It has been demonstrated that the 0‐0 absorption transition of poly(3‐hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid–liquid phase separation process during solution deposition. Pronounced J‐like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid–liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid–liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out‐set of semiconductor:insulator architectures of pre‐defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 304–310  相似文献   

20.
The binary interaction energies between styrene and various methacrylates were determined from newly examined phase boundaries with lattice–fluid theory. Because the blends of polystyrene (PS) and poly(cyclohexylmethacrylate) (PCHMA) were only miscible at high molecular weights when the blends were prepared by solution casting from tetrahydrofuran, we examined the miscibility of other blends by changing the molecular weights of PS or methacrylate polymers. On the basis of the phase‐separation temperature caused by the lower critical solution temperature, the miscibility of PS with the various methacrylates appeared to be in the order PCHMA > poly(n‐propyl‐methacrylate) (PnPMA) > poly(ethyl methacrylate) (PEMA) > poly(n‐butyl‐methacrylate) (PnBMA) > poly(iso‐butyl‐methacrylate) > poly(methyl methacrylate) (PMMA) > poly(tert‐butyl methacrylate), and the branching of butylmethacrylate appeared to decrease the miscibility with PS. The interaction energies between PS with various methacrylates obtained from phase boundaries with lattice–fluid theory reached minimum value corresponding to the styrene/n‐propylmethacrylate interaction. They were in the order PnPMA < PEMA < PCHMA < PnBMA < PMMA. The difference in the order of miscibility and interaction energies might be attributed to the terms related to the compressibility. The phase‐separation temperatures calculated with the interaction energies obtained here indicated that the PS/PEMA and PS/PnPMA blends at high molecular weights were miscible, whereas the PS/PnBMA blends were immiscible at high molecular weights. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2666–2677, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号