首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Treatment of the cyclo-P3 complexes [(triphos)MP3] [triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane; M = Co (1), Rh (2)] with stoichiometric amounts of [M'(CO)5(thf)]n+ (n = 0, M' = Cr, Mo, W; n = 1, M' = Re) and [W(CO)4(PPh3)(thf)] yields the compounds [[(triphos)M](mu,eta 3:1-P3) [M'(CO)5]] [M = Co; M' = Cr (3a), Mo (3b), W (3c). M = Rh; M' = W (4)], [[(triphos)Co](mu,eta 3:1-P3)[Re(CO5)]]BF4.C7H8 (5) and [[(triphos)Rh](mu,eta 3:1-P3)[W(CO)4PPh3]].2CH2Cl2 (6). The X-ray structures of 5 and 6 have been determined. Crystal data: 5, monoclinic space group P2(1)/n, a = 14.754(2) A, b = 24.886(4) A, c = 15.182(2) A, beta = 103.38(1) degrees, Z = 4; 6, monoclinic space group P2(1)/n, a = 14.872(3) A, b = 27.317(6) A, c = 16.992(4) A, beta = 111.75(5) degrees, Z = 4. The effects of eta 1 coordination on the MP3 core are discussed by comparing the MP3 skeletons in the above structures with those of the previously characterized bis and tris end-on adducts of organometallic fragments of 1. Variable temperature NMR data for the compounds provide evidence for fluxional processes in solution that may be interpreted as [(triphos)M] rotation about its C3 axis and [M'(CO)5] or [M'(CO)4PPh3] scrambling over the P3 cycle. The activation parameters of the fragment scrambling process are determined.  相似文献   

2.
Treatment of [[Ti(eta(5)-C(5)Me(5))(mu-NH)](3)(mu(3)-N)] with alkali-metal bis(trimethylsilyl)amido derivatives [M[N(SiMe(3))(2)]] in toluene affords edge-linked double-cube nitrido complexes [M(mu(4)-N)(mu(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]](2) (M = Li, Na, K, Rb, Cs) or corner-shared double-cube nitrido complexes [M(mu(3)-N)(mu(3)-NH)(5)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = Na, K, Rb, Cs). Analogous reactions with 1/2 equiv of alkaline-earth bis(trimethylsilyl)amido derivatives [M[N(SiMe(3))(2)](2)(thf)(2)] give corner-shared double-cube nitrido complexes [M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = Mg, Ca, Sr, Ba). If 1 equiv of the group 2 amido reagent is employed, single-cube-type derivatives [(thf)(x)[(Me(3)Si)(2)N]M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]] (M = Mg, x = 0; M = Ca, Sr, Ba, x = 1) can be isolated or identified. The tetrahydrofuran molecules are easily displaced with 4-tert-butylpyridine in toluene, affording the analogous complexes [(tBupy)[(Me(3)Si)(2)N]M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]] (M = Ca, Sr). The X-ray crystal structures of [M(mu(3)-N)(mu(3)-NH)(5)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = K, Rb, Cs) and [M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3))-N)](2)] (M = Ca, Sr) have been determined. The properties and solid-state structures of the azaheterometallocubane complexes bearing alkali and alkaline-earth metals are discussed.  相似文献   

3.
The nature of the substituents present on the calix-tetrapyrrole tetra-anion ligand [[R2C(C4H2N)]4]4- (R = [-(CH2)5-]0.5, Et) determines the type of reactivity of the corresponding SmII compounds with acetylene. With R = [-(CH2)5-]0.5, dehydrogenation occurred to yield the nearly colorless dinuclear diacetylide complex [[[[-(CH2)5-]4-calix-tetrapyrrole]SmIII]2(mu-C2Li4)].THF as the only detectable reaction product. Conversely, with R = Et, acetylene coupling in addition to dehydrogenation resulted in the formation of a dimeric butatrienediyl enolate derivative [[(Et8-calix-tetrapyrrole)SmIII[Li[Li(thf)]2(mu-OCH=CH2)]]2(mu,eta2,eta'2-HC=C=C=CH)]. Reaction of the trivalent hydride [(Et8-calix-tetrapyrrole)(thf)SmIII[(mu-H)[Li(thf)]]2 or of the terminally bonded methyl derivative [(Et8-calix-tetrapyrrole)(CH3)SmIII[[Li(thf)]2[Li(thf)2](mu3-Cl)]] with acetylene resulted in a mixture of the carbide [[(Et8-calix-tetrapyrrole)SmIII]2(mu-C2Li4)].Et2O with the dimerization product [[(Et8-calix-tetrapyrrole)SmIII[Li[Li(thf)]2(mu3-OCH=CH2)]]2-mu,eta2,eta'2-HC=C=C=CH)]. The same reaction also yielded a third product, a trivalent complex [[(Et8-calix-tetrapyrrole)SmIII[Li(thf)2]]2], in which the macrocycle was isomerized by shifting the ring attachment of one of the four pyrrole rings.  相似文献   

4.
Two mononuclear bis(oxamato) complexes with the formula [nBu4N]2[M(2,3-acbo)] (M=Ni (), Cu (), with acbo=anthra-9,10-chinone-2,3-bis(oxamato) have been synthesized starting from symmetric diethyl N,N'-anthra-9,10-chinone-2,3-bis(oxamate) (, 2,3-acboH2Et2). The crystal structures of and have been determined, verifying that the transition metal ions are eta4(kappa2N,kappa2O) coordinated by the [2,3-acbo]4- ligands. Using the asymmetric diethyl N,N'-anthra-9,10-chinone-1,2-bis(oxamate) (, 1,2-acboH2Et2) leads, under otherwise identical reaction conditions, to the novel bis(oxamato) complex [(n)Bu4N]2[Ni(1,2-acbo)] () whereby in the case of Cu(II) the derivate [nBu4N]2[Cu(aibo)2] () (aibo=anthra[1,2-d]-(imidazole-2-carboxylato)-6,11-dione) has been obtained. The crystal structures of and have been determined, displaying that the Ni(II) ion of is eta4(kappa2N,kappa2O) coordinated by the [1,2-acbo]4- ligand. The Cu(II) ion of is coordinated by two [aibo]2- ligands, giving rise to an approximately square-planar trans-bis(aibo-N,O) arrangement. Using the symmetric diethyl N,N'-4,5-dinitro-o-phenylene-bis(oxamate) (, niboH2Et2), possessing strongly electron withdrawing NO2-groups, leads under otherwise identical reaction conditions to the bis(oxamato) complex [nBu4N]2[Ni(nibo)] (), whereby in the case of Cu(II) the derivate [nBu4N]2[Cu(niqo)2] () (niqo=7,8-dinitro-2,3-quinoxalinedionato) has been obtained. The crystal structures of and have been determined, ensuring that the Ni(II) ion of is eta(4)(kappa2N,kappa2O) coordinated by the [nibo]4- ligand. The Cu(II) ion of is coordinated by four oxygen atoms of two [niqo]2- ligands, giving rise to an approximately square-planar coordination geometry.  相似文献   

5.
To model the Ti-olefin interaction in the putative [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(R')(olefin)(+) intermediates in "constrained geometry" Ti-catalyzed olefin polymerization, chelated alkoxide olefin complexes [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))(+) have been investigated. The reaction of [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(2) (1a,b; R = H, Me) with HOCMe(2)CH(2)CH(2)CH=CH(2) yields mixtures of [eta(5)-C(5)R(4)SiMe(2)NH(t)Bu]TiMe(2)(OCMe(2)CH(2)CH(2)CH=CH(2)) (2a,b) and [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(OCMe(2)CH(2)CH(2)CH=CH(2)) (3a,b). The reaction of 2a/3a and 2b/3b mixtures with B(C(6)F(5))(3) yields the chelated olefin complexes [[eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][MeB(C(6)F(5))(3)] (4a,b; 71 and 89% NMR yield). The reaction of 2b/3b with [Ph(3)C][B(C(6)F(5))(4)] yields [[eta(5): eta(1)-C(5)Me(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][B(C(6)F(5))(4)] (5b, 88% NMR yield). NMR studies establish that 4a,b and 5b exist as mixtures of diastereomers (isomer ratios: 4a/4a', 62/38; 4b/4b', 75/25; 5b/5b', 75/25), which differ in the enantioface of the olefin that is coordinated. NMR data for these d(0) metal olefin complexes show that the olefin coordinates to Ti in an unsymmetrical fashion primarily through C(term) such that the C=C pi bond is polarized with positive charge buildup on C(int). Dynamic NMR studies show that 4b/4b' undergoes olefin face exchange by a dissociative mechanism which is accompanied by fast inversion of configuration at Ti ("O-shift") in the olefin-dissociated intermediate. The activation parameters for the conversion of 4b to 4b' (i.e., 4b/4b' face exchange) are: DeltaH = 17.2(8) kcal/mol; DeltaS = 8(1) eu. 4a/4a' also undergoes olefin face exchange but with a lower barrier (DeltaH = 12.2(9) kcal/mol; DeltaS = -2(3) eu), for the conversion of 4a to 4a'.  相似文献   

6.
The reaction of the group 9 bis(hydrosulfido) complexes [Cp*M(SH)2(PMe3)] (M=Rh, Ir; Cp*=eta(5)-C 5Me5) with the group 6 nitrosyl complexes [Cp*M'Cl2(NO)] (M'=Mo, W) in the presence of NEt3 affords a series of bis(sulfido)-bridged early-late heterobimetallic (ELHB) complexes [Cp*M(PMe3)(mu-S)2M'(NO)Cp*] (2a, M=Rh, M'=Mo; 2b, M=Rh, M'=W; 3a, M=Ir, M'=Mo; 3b, M=Ir, M'=W). Similar reactions of the group 10 bis(hydrosulfido) complexes [M(SH)2(dppe)] (M=Pd, Pt; dppe=Ph 2P(CH2) 2PPh2), [Pt(SH)2(dppp)] (dppp=Ph2P(CH2) 3PPh2), and [M(SH)2(dpmb)] (dpmb=o-C6H4(CH2PPh2)2) give the group 10-group 6 ELHB complexes [(dppe)M(mu-S)2M'(NO)Cp*] (M=Pd, Pt; M'=Mo, W), [(dppp)Pt(mu-S)2M'(NO)Cp*] (6a, M'=Mo; 6b, M'=W), and [(dpmb)M(mu-S)2M'(NO)Cp*] (M=Pd, Pt; M'=Mo, W), respectively. Cyclic voltammetric measurements reveal that these ELHB complexes undergo reversible one-electron oxidation at the group 6 metal center, which is consistent with isolation of the single-electron oxidation products [Cp*M(PMe3)(mu-S)2M'(NO)Cp*][PF6] (M=Rh, Ir; M'=Mo, W). Upon treatment of 2b and 3b with ROTf (R=Me, Et; OTf=OSO 2CF 3), the O atom of the terminal nitrosyl ligand is readily alkylated to form the alkoxyimido complexes such as [Cp*Rh(PMe3)(mu-S)2W(NOMe)Cp*][OTf]. In contrast, methylation of the Rh-, Ir-, and Pt-Mo complexes 2a, 3a, and 6a results in S-methylation, giving the methanethiolato complexes [Cp*M(PMe3)(mu-SMe)(mu-S)Mo(NO)Cp*][BPh 4] (M=Rh, Ir) and [(dppp)Pt(mu-SMe)(mu-S)Mo(NO)Cp*][OTf], respectively. The Pt-W complex 6b undergoes either S- or O-methylation to form a mixture of [(dppp)Pt(mu-SMe)(mu-S)W(NO)Cp*][OTf] and [(dppp)Pt(mu-S) 2W(NOMe)Cp*][OTf]. These observations indicate that O-alkylation and one-electron oxidation of the dinuclear nitrosyl complexes are facilitated by a common effect, i.e., donation of electrons from the group 9 or 10 metal center, where the group 9 metals behave as the more effective electron donor.  相似文献   

7.
The reaction of the {2,6-[2,6-(iPr)2PhN=C(CH3)]2(C5H3N)}FeCl2 catalyst precursor with R3Al [R = Me, Et] afforded {2,6-[2,6-(iPr)2PhN=C(CH3)]2(C5H3N)}AlMe2 (1) and [eta4-LAl2Et3(mu-Cl)]Fe-(eta6-C7H8) (2), respectively. These paramagnetic species arises from both transmetalation, during which the strong terdentate ligand loses the Fe center, and reduction. The extent of reduction depends on the nature of the Al alkylating agent. The electrons necessary for the reduction are likely to be provided by cleavage of Fe-C bond of transient low-valent organo-Fe species.  相似文献   

8.
Addition of primary amines to N-[2-(diphenylphosphanyl)benzoyloxy]succinimide affords 2-diphenylphosphanylbenzamides, Ph2PC6H4C(O)NHR (R = C(CH3)3, 3; R = H, 4; R = CH2CH2CH3, 5; R = CH(CH3)2, 6). Addition of NiCl(eta3-CH2C6H5)(PMe3) to the deprotonated potassium salts of the amides and subsequent treatment of two equivalents of B(C6F5)3 to the resulting products furnishes eta3-benzyl zwitterionic nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta3-CH2C6H5) (R = C6H5, 9; R = C(CH3)3, 10; R = H, 11; R = CH2CH2CH3, 12; R = CH(CH3)2, 13). Solid structures of 9, 11, 13 and the intermediate eta1-benzyl nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta1-CH2C6H5)(PMe3) (R = C6H5, 7; R = C(CH3)3, 8) were determined by X-ray crystallography. When ethylene is added to the eta3-benzyl zwitterionic nickel(II) complexes, butene is obtained by the complexes 9-12 but complex 13 provides very high molecular-weight branched polyethylene (Mw, approximately 1300000) with excellent activity (up to 5200 kg mol-1 h-1 at 100 psi gauge).  相似文献   

9.
Wozniak M  Nowogrocki G 《Talanta》1979,26(12):1135-1141
The acids under study differed from one another in length of the carbon chain [N + H(3)(CH(2))(n)PO(3)H(-) for n = 1, 2, 3], substitution on the nitrogen atom [R(1)R(2)N + HCH(2)PO(3)H(-) for R(1) = H; R(2) = Me, Et and R(1) = R(2)= Me, Et] or extent of branching on the carbon atom adjacent to functional groups [N + H(3)CR(3)R(4)PO(3)H(-) for R(3) = H; R(4) = Me, Et, nPr, iPr, nBu and R(3) = R(4) = Me]. Acidity constants and overall stability constants of complexes formed with Ca(II), Mg(II), Co(II), Ni(II), Cu(II), Zn(II) were obtained with the multiparametric refinement programs MUPROT and MUCOMP, applied to potentiometric data, obtained at 25 degrees , in a 0.1M potassium nitrate medium. In the most general case, the existing species are MHA(+), MA, M(OH)A(-), MH(2)A(2), MHA(-)(2) and MA(2-)(2), where A(2-) stands for the fully ionized ligand; preliminary examination of results points out some predominant microscopic forms.  相似文献   

10.
Reduction of bis     
The reduction of symmetric, fully-substituted titanocene dichlorides bearing two pendant omega-alkenyl groups, [TiCl2(eta5-C5Me4R)2], R = CH(Me)CH= CH2 (1a). (CH2)2CH=CH2 (1b) and (CH2)3CH=CH2 (1c), by magnesium in tetrahydrofuran affords bis(cyclopentadienyl)titanacyclopentanes [Ti(IV)[eta1:eta1: eta5:eta5-C5Me4CH(Me)CH(Ti)CH2CH(CH2(Ti))CH(Me)C5Me4]] (2a), [Ti(IV)[eta1:eta1:eta5: eta5-C5Me4(CH2)2CH(Ti)(CH2)2CH(Ti)(CH2)2C5Me4]] (2b) and [Ti(IV)[eta1:eta1:eta5:eta5-C5Me4(CH2)2CH(Ti)CH(Me)CH(Me)CH(Ti)(CH2)2C5Me4]](2c), respectively, as the products of oxidative coupling of the double bonds across a titanocene intermediate. For the case of complex 1c, a product of a double bond isomerisation is obtained owing to a preferred formation of five-membered titanacycles. The reaction of the titanacyclopentanes with PbCl2 recovers starting materials 1a from 2a and 1b from 2b, but complex 2c affords, under the same conditions, an isomer of 1c with a shifted carbon - carbon double bond, [TiCl[eta5-C5Me4(CH2CH2CH=CHMe)]2] (1c'). The titanacycles 2a-c can be opened by HCl to give ansa-titanocene dichlorides ansa-[[eta5:eta5-C5Me4CH(Me)CH2CH2CH(Me)CH(Me)C5Me4]TiCl2] (3a), ansa-[[eta5:eta5-C5Me4(CH2)8C5Me4]TiCl2] (3b), along with a minor product ansa-[[eta5:eta5-C5Me4CH2CH=CH(CH2)5C5Me4]TiCl2] (3b'), and ansa-[[eta5:eta5-CsMe4(CH2)3CH(Me)CH(Me)CH=CHCH2C5Me4]TiCl2] (3c), respectively, with the bridging aliphatic chain consisting of five (3a) and eight (3b, 3b' and 3c) carbon atoms. The course of the acidolysis changes with the nature of the pendant group; while the cyclopentadienyl ring-linking carbon chains in 3a and 3b are fully saturated, compounds 3c and 3b' contain one asymetrically placed carbon-carbon double bond, which evidently arises from the beta-hydrogen elimination that follows the HCl addition.  相似文献   

11.
Supramolecular networks constructed with the tBu--C[triple bond]C superset Ag(n) (n=4 or 5) metal-ligand synthon and trifluoroacetate have been transformed through the introduction of ancillary terminal nitrile ligands, from acetonitrile through propionitrile to tert-butyronitrile, giving rise to a 2D coordination network in AgC[triple chemical bond]CtBu3 AgCF(3)CO(2)H(2)O (1), a 2D hydrogen-bonded network in AgC[triple chemical bond]CtBu5 AgCF(3)CO(2)4 CH(3)CNH(2)O (2), a 2D hybrid coordination/hydrogen-bonded network in AgC[triple chemical bond]CtBu3 AgCF(3)CO(2)CH(3)CH(2)CN2 H(2)O (3), and another 2D coordination network in AgC[triple chemical bond]CtBu4 AgCF(3)CO(2) (CH(3))(3)CCN2 H(2)O (4). Concomitantly, the linkage modes between adjacent ethynide-bound Ag(n) aggregates in these compounds are also changed. A layer-type hydrogen-bonded host lattice in isostructural AgC[triple chemical bond]CtBu4 AgCF(3)CO(2)(R(4)N)(CF(3)CO(2)) 2 H(2)O (R(4)=BnMe(3), 5; R(4)=Et(4), 6; R(4)=nPr(4), 7) is obtained by introducing quaternary ammonium cations as guest templates, which occupy the interstices and thereby mediate the interlayer separation. Use of the bulky nBu(4)N(+) cation leads to disruption of the host network in AgC[triple bond]CtBu4 AgCF(3)CO(2)3[(nBu(4)N)(CF(3)CO(2))]H(2)O (8) with generation of a discrete dense nido-Ag(5) cluster.  相似文献   

12.
It is shown that the water-soluble dicarboxylic cationic acid [(eta5-C5H4COOH)2Co(III)]+ (1) is an extremely versatile building block for the construction of organometallic crystalline edifices. Removal of one proton from 1 leads to formation of the neutral zwitterion [(eta5-C5H4COOH)(eta5-C5H4COO)Co(III)] (2), while further deprotonation leads to formation of the dicarboxylate monoanion [(eta5-C5H4COO)2Co(III)]- (3). Compounds 1. 2 and 3 possess different hydrogen-bonding capacity and participate in a variety of hydrogen-bonding networks. The cationic form 1 has been characterised as its [PF6]- and Cl- salts 1-[PF6] and 1-Cl.H2O, as well as in its co-crystal with urea, 1-Cl.3(NH2)2CO, and with the zwitterionic form 2, [(eta5-CH4COOH)(eta5-C5H4COO)Co(III)][(eta5-C5H4COOH)2Co(III)]+[PF6]-, 2.1-[PF6]. The neutral zwitterion 2 behaves as a supramolecular crown ether: it encapsulates the alkali cations K+, Rb+ and Cs+ as well as the ammonium cation NH4+ in cages sustained by O-H...O and C-H...O hydrogen bonds to form co-crystalline salts of the type 2(2)-M[PF6] (M = K, Rb, Cs) and 2(2)-[NH4][PF6]. The deprotonated acid 3 has been characterised as its Cs+ salt, Cs+-3.3H2O.  相似文献   

13.
Functionalization of the N2 ligand in the side-on bound dinitrogen complex, [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2), has been accomplished by addition of terminal alkynes to furnish acetylide zirconocene diazenido complexes, [(eta5-C5Me4H)2Zr(C[triple bond]CR)]2(mu2,eta2,eta2-N2H2) (R = nBu, tBu, Ph). Characterization of [(eta5-C5Me4H)2Zr(C[triple bond]CCMe3)]2(mu2,eta2,eta2-N2H2) by X-ray diffraction revealed a side-on bound diazenido ligand in the solid state, while variable-temperature 1H and 15N NMR studies established rapid interconversion between eta1,eta1 and eta2,eta2 hapticity of the [N2H2]2- ligand in solution. Synthesis of alkyl, halide, and triflato zirconocene diazenido complexes, [(eta5-C5Me4H)2ZrX]2(mu2,eta1,eta1-N2H2) (X = Cl, I, OTf, CH2Ph, CH2SiMe3), afforded eta1,eta1 coordination of the [N2H2]2- fragment both in the solid state and in solution, demonstrating that sterically demanding, in some cases pi-donating, ligands can overcome the electronically preferred side-on bonding mode. Unlike [(eta5-C5Me4H)2ZrH]2(mu2,eta2,eta2-N2H2), the acetylide and alkyl zirconocene diazenido complexes are thermally robust, resisting alpha-migration and N2 cleavage up to temperatures of 115 degrees C. Dinitrogen functionalization with [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) was also accomplished by addition of proton donors. Weak Br?nsted acids such as water and ethanol yield hydrazine and (eta5-C5Me4H)2Zr(OH)2 and (eta5-C5Me4H)2Zr(OEt)2, respectively. Treatment of [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) with HNMe2 or H2NNMe2 furnished amido or hydrazido zirconocene diazenido complexes that ultimately produce hydrazine upon protonation with ethanol. These results contrast previous observations with [(eta5-C5Me5)2Zr(eta1-N2)]2(mu2,eta1,eta1-N2) where loss of free dinitrogen is observed upon treatment with weak acids. These studies highlight the importance of cyclopentadienyl substituents on transformations involving coordinated dinitrogen.  相似文献   

14.
By reaction of the geometrically incomplete cubane-like clusters [(eta(5)-Cp')(3)Mo(3)S(4))][pts] and [(eta(5)-Cp')(3)W(3)S(4)][pts] (Cp' = methylcyclopentadienyl; pts = p-toluenesulfonate) with group 10 alkene complexes, three new heterobimetallic clusters with cubane-like cluster cores were isolated: [(eta(5)-Cp')(3)W(3)S(4)M'(PPh(3))][pts] ([5][pts], M' = Pd; [6][pts], M' = Pt); [(eta(5)-Cp')(3)Mo(3)S(4)Ni(AsPh(3))][pts] ([7][pts]). The compounds [5][pts]-[7][pts] are completing the extensive series of clusters [(eta(5)-Cp')(3)M(3)S(4)M'(EPh(3))][pts] (M = Mo, W; M' = Ni, Pd, Pt; E = P, As) which allows the consequences of replacing a single type of atom on structural and NMR and UV/vis spectroscopic as well as electrochemical properties to be determined. Single-crystal X-ray structure determinations of [5][pts]-[7][pts] revealed that [5][pts] was not isomorphous to the other members of the series [(eta(5)-Cp')(3)M(3)S(4)M'(EPh(3))][pts] due to distinctly different cell parameters, which in the molecular structure of [5](+) is reflected in a slightly different orientation of the PPh(3) ligand. Electrochemical measurements on the series showed that the Mo-based clusters were more difficult to oxidize than their W-based analogues. The Pd-containing clusters underwent two-electron oxidation processes, whereas the Ni- and Pt-containing clusters underwent two separated one-electron oxidation processes.  相似文献   

15.
Reaction of RNHC(S)PPh2NPPh2C(S)NR (HRSNS; R = Me, Et) with M(I) (M = Cu, Ag, Au) salts afforded zwitterionic complexes of the general formula [M(RSNS)] (M = Cu, Ag, Au). The ligand was found in the solid state in S,S-kappa2 and S,N,S-kappa3 coordination fashions. [Cu(RSNS)] and [Ag(RSNS)] can be used as metalloligand building blocks for the assembly of pentanuclear multizwitterionic Cu5, Cu3Ag2 and Ag5 core clusters of the general formula [M'2{M(RSNS)}3]2+ (M = Cu, M' = Cu, Ag; M = M' = Ag) upon reaction with suitable M' salts. The crystal structures of the most significant compounds are reported herein. Compound [Ag2{Ag(RSNS)}2(OTf)2] was also isolated and structurally characterized, representing a model for the intermediate species of the aforementioned assembly.  相似文献   

16.
The reactions between [(eta5-C5H(5-x)Br(x))M(CO)3] (M = Re, Mn; x = 1, 3, 4, 5) and [IZn[(CH2)(n)R(f8)]] (n = 2, 3; R(f8) = (CF2)7CF3) in the presence of [Cl2PdL2] catalysts give the title complexes [[eta5-C5H(5-x)[(CH2)(n)R(f8)]x]M(CO)3]. In the case of x = 5, the major product is actually [[eta5-C5H[(CH2)(n)R(f8)]4]M(CO)3], in which one of the bromides has been substituted by hydride. Minor amounts of multiple hydride substitution products are formed, all of them readily separable on fluorous silica gel. Irradiation of the manganese complexes in CF3C6H5/MeOH/ether gives uncoordinated cyclopentadienes, which can be deprotonated and reattached to other metals. Partition coefficients have been measured (CF3C6F11/toluene): complexes with three or more ponytails are highly fluorophilic, with values of > 99.8: < 0.2. The IR [symbol: see text]CO bands have been used to probe the inductive effects of the ponytails at the metal centers.  相似文献   

17.
A series of group 13 main group complexes with pi,sigma-type bonding interaction of the formula [{(eta (5)-RC 2B 9H 9)(CH 2)(eta (1)-NMe 2)}MMe] (M = Al, R = H 5, Me 6; Ga, R = H 7, Me 8; In, R = H 9, Me 10) was produced by the reaction of group 13 metal alkyls (MMe 3; M = Al, Ga, In) with the dicarbollylamine ligands, nido-8-R-7,8-C 2B 9H 10-7-(CH 2)NHMe 2 (R = H 1, Me 2). The reactions of 1 and 2 with AlMe 3 in toluene initially afforded tetra-coordinated aluminum complexes with sigma,sigma-type bonding interaction, [{(eta (1)-RC 2B 9H 10)(CH 2)(eta (1)-NMe 2)}AlMe 2] (R = H 3, Me 4), which readily underwent further methane elimination to yield the corresponding constrained geometry complexes (CGCs, 5 and 6) of aluminum with pi,sigma-bonding interaction. However, the reactions between 1 and 2 and MMe 3 (M = Ga, In) in toluene produced gallium and indium pi,sigma-CGCs of 7 and 10 directly, not proceeding through sigma,sigma-intermediates. The structures of group 13 metal CGCs were established by X-ray diffraction studies of 5, 6, and 8, which authenticated a characteristic eta (5):eta (1)-coordination mode of the dicarbollylamino ligand to the group 13 metals. A similar pi,sigma-bonding interaction was also established in ethylene-bridged dicarbollylethylamine series. Thus, aluminum pi,sigma-CGCs of dicarbollylethylamine, [{(eta (5)-RC 2B 9H 9)(CH 2) 2(eta (1)-NBz 2)}AlMe] (R = H 17, Me 18), were prepared by the trans-metalation of the [{(eta (5)-RC 2B 9H 9)(CH 2) 2(eta (1)-NBz 2)}Ti(NMe 2) 2] (R = H 15, Me 16) with AlMe 3. However, only sigma,sigma-bonded complexes of the formula [{(eta (1)-RC 2B 9H 9)(CH 2) 2(eta (1)-NBz 2)}AlMe 2] (R = H 13, Me 14) were isolated by the reaction between [ nido-7-8-R-7,8-C 2B 9H 10-(CH 2) 2HNBz 2] (R = H 11, Me 12) and AlMe 3. When methane-elimination reactions between metal alkyls and dicarbollylamines were carried out with either the gallium atom or monobenzyl aminoethyl tethered ligands, [ nido-7-H 2NBz(CH 2) 2-8-R-7,8-C 2B 9H 10] (R = H 21, Me 22), desired pi,sigma-CGCs, [{(eta (5)-RC 2B 9H 9)(CH 2) 2(eta (1)-NBz 2)}GaMe] (R = H 19, Me 20) or [{(eta (5)-RC 2B 9H 9)(CH 2) 2(eta (1)-NHBz)}AlMe] (R = H 23, Me 24), were generated, respectively. DFT calculation on 5 provides evidence of existence of pi,sigma-bonding of dicarbollylamine ligand to the aluminum atom: pi-bonding interaction of a dicarbollyl unit becomes intensified in the presence of a weak sigma-bonding amine-tethered group. Furthermore, preference for the formation of pi,sigma-bonding was predicted by optimizing a reaction profile including sigma,sigma- and pi,sigma-structures as well as transition state structures for each methylene- and ethylene-spaced ligand system, 3-5 and 14- 18, to reveal that pi,sigma-bonding interaction is more favorable in the case of a methylene-tethered ligand system.  相似文献   

18.
Reaction of the methylcyclopentadienyl (Cp') cluster compound [(eta(5)-Cp')(3)Mo(3)S(4)][pts] (pts = p-toluenesulfonate) with noble metal alkene complexes resulted in the formation of four new heterobimetallic cubane-like Mo(3)S(4)M' cluster cores (M' = Ru, Os, Rh, Ir). Thus, reaction with [(1,5-cod)Ru(CO)(3)] or [(1,3-cod)Os(CO)(3)] (cod = cyclooctadiene) afforded [(eta(5)-Cp')(3)Mo(3)S(4)M'(CO)(2)][pts] (M' = Ru: [1][pts]; M' = Os: [2][pts]). When [1][pts] was kept in CH(2)Cl(2)/pentane solution, partial loss of carbonyl ligands occurred and the carbonyl-bridged dicubane cluster [((eta(5)-Cp')(3)Mo(3)S(4)Ru)(2)(mu-CO)(3)][pts](2) was isolated. An X-ray crystal structure revealed the presence of the hitherto unobserved Ru(mu-CO)(3)Ru structural element. The formation of cluster compounds containing Mo(3)S(4)Rh and Mo(3)S(4)Ir cores was achieved in boiling methanol by reacting [(eta(5)-Cp')(3)Mo(3)S(4)][pts] with [M'Cl(cyclooctene)(2)](2) (M' = Rh, Ir) in the presence of PPh(3). In this way [(eta(5)-Cp')(3)Mo(3)S(4)M'Cl(PPh(3))][pts] (M' = Rh, Ir) could be isolated. An alternative route to the Mo(3)S(4)Rh cluster core was found in the reaction of [(eta(5)-Cp')(3)Mo(3)S(4)][pts] with [RhCl(1,5-cod)](2), which yielded [(eta(5)-Cp')(3)Mo(3)S(4)Rh(cod)][pts](2) ([7][pts](2)). Substitution of the cod ligand in [7][pts](2) by 1,3-bis(diphenylphosphanyl)propane (dppp) gave [(eta(5)-Cp')(3)Mo(3)S(4)Rh(dppp)][pts](2).  相似文献   

19.
The broad applicability of the title reaction is established through studies of neutral and charged, coordinatively saturated and unsaturated, octahedral and square planar rhenium, platinum, rhodium, and tungsten complexes with cyclopentadienyl, phosphine, and thioether ligands which contain terminal olefins. Grubbs' catalyst, [Ru(=CHPh)(PCy3)2(Cl)2], is used at 2-9 mol% levels (0.0095-0.00042 M, CH2-Cl2). Key data are as follows: [(eta5-C5H4(CH2)6CH=CH2)Re(NO)(PPh3)-(CH3)], intermolecular metathesis (95 %); [(eta5-C5H5)Re(NO)(PPh3)(E(CH2CH=CH2)2)]+ TfO (E=S, PMe, PPh), formation of five-membered heterocycles (96-64%; crystal structure E = PMe); [(eta5-C5Me5)Re(NO)(PPh((CH2)6CH=CH2)2)(L)]n+ nBF4-(L/n = CO/1, Cl/0), intramolecular macrocyclization (94-89%; crystal structure L= Cl); fac-[(CO)3Re(Br)(PPh2(CH2)6CH=CH2)2] and cis-[(Cl)2Pt(PPh2(CH2)6CH=CH2)2], intramolecular macrocyclizations (80-71%; crystal structures of each and a hydrogenation product); cis-[(Cl)2Pt(S(R)(CH2)6CH= CH2)2], intra-/intermolecular macrocyclization (R=Et, 55%/24%; tBu, 72%/ <4%); trans-[(Cl)(L)M(PPh2(CH2)6CH=CH2)2] (M/L = Rh/CO, Pt/C6F5) intramolecular macrocyclization (90-83%; crystal structure of hydrogenation product, M=Pt); fac-[W(CO)3(PPh((CH2)6CH=CH2)2)3], intramolecular trimacrocyclization (83 %) to a complex mixture of triphosphine, diphosphine/ monophosphine, and tris(monophosphine) complexes, from which two isomers of the first type are crystallized. The macrocycle conformations, and basis for the high yields, are analyzed.  相似文献   

20.
Mixed-ligand hydrazine complexes [M(CO)(RNHNH2)P4](BPh4)2 (1, 2) [M = Ru, Os; R = H, CH3, C6H5; P = P(OEt)3] with carbonyl and triethyl phosphite were prepared by allowing hydride [MH(CO)P4]BPh4 species to react first with HBF4.Et2O and then with hydrazines. Depending on the nature of the hydrazine ligand, the oxidation of [M(CO)(RNHNH2)P4](BPh4)2 derivatives with Pb(OAc)4 at -30 C gives acetate [M(kappa1-OCOCH3)(CO)P4]BPh4 (3a), phenyldiazene [M(CO)(C6H5N=NH)P4](BPh4)2 (3c, 4c), and methyldiazene [M(CO)(CH3N=NH)P4](BPh4)2 (3b, 4b) derivatives. Methyldiazene complexes 3b and 4b undergo base-catalyzed tautomerization of the CH3N=NH ligand to formaldehyde-hydrazone NH2N=CH2, giving the [M(CO)(NH2N=CH2)P4](BPh4)2 (5, 6) derivatives. Complexes 5 and 6 were characterized spectroscopically and by the X-ray crystal structure determination of the [Ru(CO)(NH2N=CH2)[P(OEt)3]4](BPh4)2 (5) derivative. Acetone-hydrazone [M(CO)[NH2N=C(CH3)2]P4](BPh4)2 (7, 8) complexes were also prepared by allowing hydrazine [M(CO)(NH2NH2)P4](BPh4)2 derivatives to react with acetone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号