首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this paper, we consider the isentropic irrotational steady plane flow past a curved wedge. First, for a uniform supersonic oncoming flow, we study the direct problem: For a given curved wedge y = f(x), how to globally determine the corresponding shock y = g(x) and the solution behind the shock? Then, we solve the corresponding inverse problem: How to globally determine the curved wedge y = f(x) under the hypothesis that the position of the shock y = g(x) and the uniform supersonic oncoming flow are given? This kind of problems plays an important role in the aviation industry. Under suitable assumptions, we obtain the global existence and uniqueness for both problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The problem for the supersonic plane flow described by TSD equation past a curved wedge is considered.For a given curved wedge,we will determine the corresponding shock and the solution behind the shock.Moreover,under suitable assumptions,we obtain the global existence and uniqueness for the above mentioned problem.  相似文献   

3.
In this paper we discuss the supersonic flow past a curved convex wedge. Our conclusion is that if the vertex angle of the wedge is less than a critical angle, the shock attached the head of the wedge is weak, and if the wedge is formed by a smooth convex curve, monotonically increasing, then the global solution of such a boundary value problem exists.  相似文献   

4.
This note is devoted to the study of the global existence of a shock wave for the supersonic flow past a curved wedge. When the curved wedge is a small perturbation of a straight wedge and the angle of the wedge is less than some critical value, we show that a shock attached at the wedge will exist globally.  相似文献   

5.
In this paper, we study the global existence of the supersonic shock for the steady supersonic Euler flow past a curved 2-D wedge. By using the method of characteristic, we show that the shock exists globally and the flow between the shock and wedge is continuous provided the wedge is a small perturbation of a straight wedge under a weighted global Sobolev norm and the vertex angle is less than the extreme angle.  相似文献   

6.
The problem of shock reflection by a wedge in the flow dominated by the unsteady potential flow equation is an important problem. In weak regular reflection, the flow behind the reflected shock is immediately supersonic and becomes subsonic further downstream. The reflected shock is transonic. Its position is a free boundary for the unsteady potential equation, which is degenerate at the sonic line in self-similar coordinates. Applying the special partial hodograph transformation used in [Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle I, 2-D case, Comm. Pure Appl. Math. LVII (2004) 1-51; Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle II, 3-D case, IMS, preprint, 2003], we derive a nonlinear degenerate elliptic equation with nonlinear boundary conditions in a piecewise smooth domain. When the angle between incident shock and wedge is small, we can see the weak regular reflection as the disturbance of normal reflection as in [Chen Shuxing, Linear approximation of shock reflection at a wedge with large angle, Comm. Partial Differential Equations 21(78) (1996) 1103-1118]. By linearizing the resulted nonlinear equation and boundary conditions with the above viewpoint in [Chen Shuxing, Linear approximation of shock reflection at a wedge with large angle, Comm. Partial Differential Equations 21(78) (1996) 1103-1118], we obtain a linear degenerate elliptic equation with mixed boundary conditions in a curved quadrilateral domain. By means of elliptic regularization techniques, a delicate a priori estimate and compact arguments, we show that the solution of the linearized problem is smooth in the interior and Lipschitz continuous up to the degenerate boundary.  相似文献   

7.
The problem of shock reflection by a wedge, which the flow is dominated by the unsteady potential flow equation, is a important problem. In weak regular reflection, the flow behind the reflected shock is immediately supersonic and becomes subsonic further downstream. The reflected shock is transonic. Its position is a free boundary for the unsteady potential equation, which is degenerate at the sonic line in self-similar coordinates. Applying the special partial hodograph transformation used in [Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle I, 2-D case, Comm. Pure Appl. Math. 57 (2004) 1-51; Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle II, 3-D case, IMS, preprint (2003)], we derive a nonlinear degenerate elliptic equation with nonlinear boundary conditions in a piecewise smooth domain. When the angle, which between incident shock and wedge, is small, we can see that weak regular reflection as the disturbance of normal reflection as in [Shuxing Chen, Linear approximation of shock reflection at a wedge with large angle, Comm. Partial Differential Equations 21 (78) (1996) 1103-1118]. By linearizing the resulted nonlinear equation and boundary conditions with above viewpoint, we obtain a linear degenerate elliptic equation with mixed boundary conditions and a linear degenerate elliptic equation with oblique boundary conditions in a curved quadrilateral domain. By means of elliptic regularization techniques, delicate a priori estimate and compact arguments, we show that the solution of linearized problem with oblique boundary conditions is smooth in the interior and Lipschitz continuous up to the degenerate boundary.  相似文献   

8.
The investigation of Mach reflection formed after the impingement of a weak plane shock wave on a wedge with shock Mach number Ms near 1, is still an open problem[12]. It's difficult for shock tube experiments with interferometer to detect contact discontinuities if it is too weak; also difficult to catch with due accuracy the transition condition between Mach reflection and regular reflection. The interest to this phenomenon is continuing, especially for weak shocks, because there was systematic discrepancy between simplified three shock theory of von Neumann [8] and shock tube results [15] which was named by G. Birkhoff as “von Neumann Paradox on three shock theory” [18].In 1972, K.O.Friedrichs called for more computational efforts on this problem. Recently it is known that for weak impinging shocks it's still difficult to get contact discontinuities and curved Mach stem with satisfactory accuracy. Recent numerical computation sometimes even fails to show reflected shock wave[6]. These explain why von Neumann paradox of the three shock theory in case of weak discontinuities is still a problem of interesting [9,12,14]. In this paper, on one hand, we investigate the numerical methods for Euler's equation for compressible inviscid flow, aiming at improving the computation of contact discontinuities, on the other hand, a methodology is suggested to correctly plot flow data from the massive information in storage. On this basis, all the reflected shock wave , contact discontinuities and the curved Mach stem are determined. We get Mach reflection under the condition when over-simplified shock theory predicts no such configuration[5].  相似文献   

9.
In this paper, under certain downstream pressure condition at infinity, we study the globally stable transonic shock problem for the perturbed steady supersonic Euler flow past an infinitely long 2-D wedge with a sharp angle. As described in the book of Courant and Friedrichs [R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948] (pages 317-318): when a supersonic flow hits a sharp wedge, it follows from the Rankine-Hugoniot conditions and the entropy condition that there will appear a weak shock or a strong shock attached at the edge of the sharp wedge in terms of the different pressure states in the downstream region, which correspond to the supersonic shock and the transonic shock respectively. It has frequently been stated that the strong shock is unstable and that, therefore, only the weak shock could occur. However, a convincing proof of this instability has apparently never been given. The aim of this paper is to understand this open problem. More concretely, we will establish the global existence and stability of a transonic shock solution for 2-D full Euler system when the downstream pressure at infinity is suitably given. Meanwhile, the asymptotic state of the downstream subsonic solution is determined.  相似文献   

10.
As is well known, two solutions of the problem of a supersonic stationary inviscid nonheatconducting gas flow onto a planar infinite wedge are theoretically possible: the solution with a strong shock (the flow speed behind the shock is subsonic) and the solution with a weak shock (the flow speed behind the shock is supersonic). Unlike the well-studied case of a strong shock that is generically unstable [A.M. Blokhin, D.L. Tkachev, L.O. Baldan, Study of the stability in the problem on flowing around a wedge. The case of strong wave, J. Math. Anal. Appl. 319 (2006) 248-277; A.M. Blokhin, D.L. Tkachev, Yu.Yu. Pashinin, Stability condition for strong shock waves in the problem of flow around an infinite plane wedge, Nonlinear Anal. Hybrid Syst. 2 (2008) 1-17], R. Courant and K.O. Friedrichs [R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, New York, 1948] assumed that the solution with a weak shock is asymptotically stable by Lyapunov. Presentation of classical solution to the corresponding problem which is found in the present paper is the first step on the way to justification of Courant-Friedrichs hypothesis on linear level.  相似文献   

11.
The supersonic flow past a concave double wedge is discussed. Because of the interaction between the outer shock attached at the head of the wedge and the inner shock issued from the concave corner, there is a rarefaction wave issued from the intersection of the outer and inner shock. The rarefaction wave is reflected by the outer shock and the wedge infinitely, while the outer shock is also bent due to interaction. The global existence of the solution is proved under the assumptions that the outer shock is weak and the difference of two slopes of the double wedge is small. Meanwhile, a rigorous proof of the asymptotic behavior of the global solution is given. The property is often ap plied to numerical computation. Project partially supported by the National Natural Science Foundation of China and Doctoral Programme Foundation of IHEC.  相似文献   

12.
In this paper, the authors consider the inverse piston problem for the system of one-dimensional isentropic flow and obtain that, under suitable conditions, the piston velocity can be uniquely determined by the initial state of the gas on the right side of the piston and the position of the forward shock.  相似文献   

13.
We study the stability of transonic shocks in steady supersonic flow past a wedge. It is known that in generic case such a problem admits two possible locations of the shock front, connecting the flow ahead of it and behind it. They can be distinguished as supersonic–supersonic shock and supersonic–subsonic shock (or transonic shock). Both these possible shocks satisfy the Rankine–Hugoniot conditions and the entropy condition. We prove that the transonic shock is conditionally stable under perturbation of the upstream flow or perturbation of wedge boundary. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
We study a problem for two-dimensional steady potential and isentropic Euler equations in a bounded domain, where an artificial detached shock interacts with a wedge. Using the stream function, we obtain a free boundary problem for the subsonic state and the detached artificial shock curve and we prove that such configuration admits a unique solution in certain weighted Hölder spaces. The proof is based on various Hölder and Schauder estimates for second-order elliptic equations and fixed point theorems. Moreover, we pose an energy principle and remark that the physical attached shock is the minimizer of the energy functional.  相似文献   

15.
We study the classical problem of a supersonic stationary flow of a nonviscous nonheat-conducting gas in local thermodynamic equilibrium past an infinite plane wedge. Under the Lopatinski? condition on the shock wave (neutral stability), we prove the well-posedness of the linearized mixed problem (the main solution is a weak shock wave), obtain a representation of the classical solution, where, in this case (in contrast to the case of the uniform Lopatinski? condition—an absolutely stable shock wave), plane waves additionally appear in the representation. If the initial data have compact support, the solution reaches the given regime in infinite time.  相似文献   

16.
We consider an initial value problem for the KdV equation in the limit of weak dispersion. This model describes the formation and evolution in time of a nondissipative shock wave in plasma. Using the perturbation theory in power series of a small dispersion parameter, we arrive at the Riemann simple wave equation. Once the simple wave is overturned, we arrive at the system of Whitham modulation equations that describes the evolution of the resulting nondissipative shock wave. The idea of the approach developed in this paper is to study the asymptotic behavior of the exact solution in the limit of weak dispersion, using the solution given by the inverse scattering problem technique. In the study of the problem, we use the WKB approach to the direct scattering problem and use the formulas for the exact multisoliton solution of the inverse scattering problem. By passing to the limit, we obtain a finite set of relations that connects the space-time parameters x, t and the modulation parameters of the nondissipative shock wave.Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 106, No. 1, pp. 44–61, January, 1996.  相似文献   

17.
The problem of the flow of a uniform supersonic ideal (inviscid and non-heat-conducting) gas over a wedge is considered. If the turning angle of the flow, which is equal to the angle of inclination of the generatrix of the wedge, is less than the maximum value, the problem has two solutions. In the solution with an oblique low-intensity (“weak”) shock, the uniform flow between the shock and the wedge is almost always supersonic. One exception is a small vicinity of the maximum turning angle. For an ideal gas this vicinity does not exceed a fraction of a degree at all Mach numbers. Behind a high-intensity (“strong”) shock, the flow of an ideal gas is always subsonic. “Weak” shocks are observed in all experiments with finite wedges. Some researchers attribute this preference to the “downstream” boundary conditions (“on the right at infinity” for a flow incident on the wedge from the left), and others attribute it to the instability (“Lyapunov” instability) of a flow with a strong shock when it flows over the wedge and to the stability of flow with a weak shock. The results presented below from calculations of the flows that occur for finite wedges within the two-dimensional unsteady Euler equations, when the parameters behind the strong shock are specified on the right-hand boundary, i.e., on the arc of a circle between the wedge and the shock, demonstrate the correctness of the conclusion of the first group of researchers and the incorrectness of the conclusion of the other group. In these calculations, after both small and fairly large perturbations, the flows investigated (which are, in fact, Lyapunov unstable!) return to the solution with a strong shock. In addition, the problem of steady flow over a wedge was regarded as the limit of the two-dimensional non-steady problems at infinite time. Simplification of one of them leads to the problem of the submerged over-expanded supersonic steady outflow. In the ideal gas model this problem is equivalent to flow over a wedge with both weak and strong shocks. All the solutions considered are stable.  相似文献   

18.
This paper studies the problem on the steady supersonic flow at the constant speed past an almost straight wedge with a piecewise smooth boundary. It is well known that if each vertex angle of the straight wedge is less than an extreme angle determined by the shock polar, the shock wave is attached to the tip of the wedge and constant states on both side of the shock are supersonic. This paper is devoted to generalizing this result. Under the hypotheses that each vertex angle is less than the extreme angle and the total variation of tangent angle along each edge is sufficiently small, a sequence of approximate solutions constructed by a modified Glimm scheme is proved to be convergent to a global weak solution of the steady problem. A sequence of the corresponding approximate leading shock fronts issuing from the tip is shown to be convergent to the leading shock front of the obtained solution. The regularity of the leading shock front is established and the asymptotic behaviour of the obtained solution at infinity is also studied.  相似文献   

19.
In this paper we study the stability of transonic shocks in steady supersonic flow past a wedge. We take the potential flow equation as the mathematical model to describe the compressible flow. It is known that in generic case such a problem admits two possible location of shock, connecting the flow ahead it and behind it. They can be distinguished as supersonic-supersonic shock and supersonic-subsonic shock (or transonic shock). Both these possible shocks satisfy the Rankine-Hugoniot conditions and entropy condition. In this paper we prove that the transonic shock is also stable under perturbation of the coming flow provided the pressure at infinity is well controlled.  相似文献   

20.
We are concerned with the global existence of entropy solutions of the two-dimensional steady Euler equations for an ideal gas, which undergoes a one-step exothermic chemical reaction under the Arrhenius-type kinetics. The reaction rate function ?(T) is assumed to have a positive lower bound. We first consider the Cauchy problem (the initial value problem), that is, seek a supersonic downstream reacting flow when the incoming flow is supersonic, and establish the global existence of entropy solutions when the total variation of the initial data is sufficiently small. Then we analyze the problem of steady supersonic, exothermically reacting Euler flow past a Lipschitz wedge, generating an additional detonation wave attached to the wedge vertex, which can be then formulated as an initial-boundary value problem. We establish the global existence of entropy solutions containing the additional detonation wave (weak or strong, determined by the wedge angle at the wedge vertex) when the total variation of both the slope of the wedge boundary and the incoming flow is suitably small. The downstream asymptotic behavior of the global solutions is also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号