首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Faced with limited network resources, diverse service requirements and complex network structures, how to efficiently allocate resources and improve network performances is an important issue that needs to be addressed in 5G or future 6G networks. In this paper, we propose a multi-timescale collaboration resource allocation algorithm for distributed fog radio access networks (F-RANs) based on self-learning. This algorithm uses a distributed computing architecture for parallel optimization and each optimization model includes large time-scale resource allocation and small time-scale resource scheduling. First, we establish a large time-scale resource allocation model based on long-term average information such as historical bandwidth requirements for each network slice in F-RAN by long short-term memory network (LSTM) to obtain its next period required bandwidth. Then, based on the allocated bandwidth, we establish a resource scheduling model based on short-term instantaneous information such as channel gain by reinforcement learning (RL) which can interact with the environment to realize adaptive resource scheduling. And the cumulative effects of small time-scale resource scheduling will trigger another round large time-scale resource reallocation. Thus, they constitute a self-learning resource allocation closed loop optimization. Simulation results show that compared with other algorithms, the proposed algorithm can significantly improve resource utilization.  相似文献   

2.
Wireless body area networks (WBANs) have become an integral part of our health monitoring system. However, the specific challenges offered by a dense co-existence of heterogeneous WBANs have not been properly addressed. The interference between the coexisting WBANs which cause throughput degradation and energy wastage can be mitigated by suitable channel and slot allocations. In this work, a Stackelberg game model with pricing is used for resource scheduling among multi-class WBANs. The access points (APs) act as leaders who decide the prices to be paid by the normal WBAN users for reusing the resources allocated to the critical WBAN users. The normal WBAN users act as followers which use the pricing information and a distributed learning algorithm that guarantees Pareto-optimal solution. As a benchmark for comparison purpose, we propose a centralized resource scheduling which is formulated as an optimization problem where the objective is to maximize system throughput while guaranteeing the quality of service (QoS) requirements of multi-class WBANs. To efficiently solve this problem, a column generation method is proposed. Numerical results are provided to show the efficiency and effectiveness of the proposed game model.  相似文献   

3.
Femtocell technology has emerged as an efficient cost-effective solution not only to solve the indoor coverage problem but also to cope with the growing demand requirements. This paper investigates two major design concerns in two tier networks: resource allocation and femtocell access. Base station selection together with dual bandwidth and power allocation among the two tiers is investigated under shared spectrum usage. To achieve fair and efficient resource optimization, our model assumes that the hybrid access mode is applied in the femtocells. The hybrid access mode is beneficial for system performance as (1) it lessens interference caused by nearby public users, (2) it allows public users to connect to near femtocells and get better Quality of Service (QoS) and (3) it increases system capacity as it allows the macrocell to serve more users. However, femtocells’ owners can behave selfishly by denying public access to avoid any performance reduction in subscribers’ transmissions. Such a problem needs a motivation scheme to assure the cooperation of femtocells’ owners. In this paper, we propose a game-theoretical hybrid access motivational model. The proposed model encourages femtocells’ owners to share resources with public users, thus, more efficient resource allocation can be obtained. We optimize the resource allocation by means of the Genetic Algorithm (GA). The objective of the formulated optimization problem is the maximization of network throughput that is calculated by means of Shannon’s Capacity Law. Simulations are conducted where a modified version of the Weighted Water Filling (WWF) algorithm is used as a benchmark. Our proposed model, compared to WWF, achieves more efficient resource allocation in terms of system throughput and resources utilization.  相似文献   

4.
With the rapid new advancements in technology, there is an enormous increase in devices and their versatile need for services. Fifth-generation (5G) cellular networks (5G-CNs) with network slicing (NS) have emerged as a necessity for future mobile communication. The available network is partitioned logically into multiple virtual networks to provide an enormous range of users’ specific services. Efficient resource allocation methods are critical to delivering the customers with their required Quality of Service (QoS) priorities. In this work, we have investigated a QoS based resource allocation (RA) scheme considering two types of 5G slices with different service requirements; (1) enhanced Mobile Broadband (eMBB) slice that requires a very high data rate and (2) massive Machine Type Communication (mMTC) slice that requires extremely low latency. We investigated the device-to-device (D2D) enabled 5G-CN model with NS to assign resources to users based on their QoS needs while considering the cellular and D2D user’s data rate requirements. We have proposed a Distributed Algorithm (DA) with edge computation to solve the optimization problem, which is novel as edge routers will solve the problem locally using the augmented Lagrange method. They then send this information to the central server to find the global optimum solution utilizing a consensus algorithm. Simulation analysis proves that this scheme is efficient as it assigns resources based on their QoS requirements. This scheme is excellent in reducing the central load and computational time.  相似文献   

5.
In this paper, we introduce a novel approach for power allocation in cellular networks. In our model, we use sigmoidal-like utility functions to represent different users’ modulation schemes. Each utility function is a representation of the probability of successfully transmitted packets per unit of power consumed by a user, when using a certain modulation scheme. We consider power allocation with utility proportional fairness policy, where the fairness among users is in utility percentage i.e. percentage of successfully transmitted packets of the corresponding modulation scheme. We formulate our power allocation optimization problem as a product of utilities of all users and prove that it is convex and therefore the optimal solution is tractable. We present a distributed algorithm to allocate base station powers optimally with priority given to users running lower modulation schemes while ensuring non-zero power allocation to users running higher modulation schemes. Our algorithm prevents fluctuation in the power allocation process and is capable of traffic and modulation dependent pricing policy. This can be used to flatten traffic and decrease the service price for users. We also compare our results with a benchmark algorithm and show that our algorithm performs better in allocating powers fairly to all users without dropping any user in order to maximize performance.  相似文献   

6.
In this paper, we consider joint optimization of Component Carrier (CC) selection and resource allocation in 5G Carrier Aggregation (CA) system. Firstly, the upper-bound system throughput with determined number of CCs is derived and it is proved by using graph theory that the throughput optimization problem is NP hard. Then we propose a greedy based algorithm to solve this problem and prove that the proposed algorithm can achieve at least 1/2 of the optimal performance in the worst case. At last, we evaluate the throughput and computational complexity performance through a variety of simulations. Simulation results show that the proposed algorithm can obtain better performance comparing with existing schemes while keeping the computation complexity at an acceptable level.  相似文献   

7.
With the rapid development of the Internet of Things (IoT) and the increasing number of wireless nodes, the problems of scare spectrum and energy supply of nodes have become main issues. To achieve green IoT techniques and resolve the challenge of wireless power supply, wireless-powered backscatter communication as a promising transmission paradigm has been concerned by many scholars. In wireless-powered backscatter communication networks, the passive backscatter nodes can harvest the ambient radio frequency signals for the devices’ wireless charging and also reflect some information signals to the information receiver in a low-power-consumption way. To balance the relationship between the amount of energy harvesting and the amount of information rate, resource allocation is a key technique in wireless-powered backscatter communication networks. However, most of the current resource allocation algorithms assume available perfect channel state information and limited spectrum resource, it is impractical for actual backscatter systems due to the impact of channel delays, the nonlinearity of hardware circuits and quantization errors that may increase the possibility of outage probability. To this end, we investigate a robust resource allocation problem to improve system robustness and spectrum efficiency in a cognitive wireless-powered backscatter communication network, where secondary transmitters can work at the backscattering transmission mode and the harvest-then-transmit mode by a time division multiple access manner. The total throughput of the secondary users is maximized by jointly optimizing the transmission time, the transmit power, and the reflection coefficients of secondary transmitters under the constraints on the throughput outage probability of the users. To tackle the non-convex problem, we design a robust resource allocation algorithm to obtain the optimal solution by using the proper variable substitution method and Lagrange dual theory. Simulation results verify the effectiveness of the proposed algorithm in terms of lower outage probabilities.  相似文献   

8.
Mobile edge computing (MEC) is a key feature of next-generation mobile networks aimed at providing a variety of services for different applications by performing related processing tasks closer to the users. With the advent of the next-generation mobile networks, researchers have turned their attention to various aspects of edge computing in an effort to leverage the new capabilities offered by 5G. So, the integration of software defined networking (SDN) and MEC techniques was seriously considered to facilitate the orchestration and management of Mobile Edge Hosts (MEH). Edge clouds can be installed as an interface between the local servers and the core to provide the required services based on the known concept of the SDN networks. Nonetheless, the problem of reliability and fault tolerance will be of great importance in such networks. The paper introduced a dynamic architecture that focuses on the end-to-end mobility support required to maintain service continuity and quality of service. This paper also presents an SDN control plane with stochastic network calculus (SNC) framework to control MEC data flows. In accordance with the entrance processes of different QoS-class data flows, closed-form problems were formulated to determine the correlation between resource utilization and the violation probability of each data flow. Compared to other solutions investigated in the literature, the proposed approach exhibits a significant increase in the throughput distributed over the active links of mobile edge hosts. It also proved that the outage index and the system’s aggregate data rate can be effectively improved by up to 32%.  相似文献   

9.
This paper investigates the resource allocation problem in non-orthogonal multiple-access (NOMA) cellular networks underlaid with OMA-based device-to-device (D2D) communication. This network architecture enjoys the intrinsic features of NOMA and D2D communications; namely, spectral efficiency, massive connectivity, and low-latency. Despite these indispensable features, the combination of NOMA and D2D communications exacerbates the resource allocation problem in cellular networks due to the tight coupling among their constraints and conflict over access to shared resources. The aim of our work is to maximize the downlink network sum-rate, while meeting the minimum rate requirements of the cellular tier and underlay D2D communication, and incorporating interference management as well as other practical constraints. To this end, many-to-many matching and difference-of-convex programming are employed to develop a holistic sub-channels and power allocation algorithmic solution. In addition to analyzing the properties of the proposed solution, its performance is benchmarked against an existing solution and the traditional OMA-based algorithm. The proposed solution demonstrates superiority in terms of network sum-rate, users’ connectivity, minimum rate satisfaction, fairness, and interference management, while maintaining acceptable computational complexity.  相似文献   

10.
Intelligent reflecting surfaces (IRSs) are anticipated to provide reconfigurable propagation environment for next generation communication systems. In this paper, we investigate a downlink IRS-aided multi-carrier (MC) non-orthogonal multiple access (NOMA) system, where the IRS is deployed to especially assist the blocked users to establish communication with the base station (BS). To maximize the system sum rate under network quality-of-service (QoS), rate fairness and successive interference cancellation (SIC) constraints, we formulate a problem for joint optimization of IRS elements, sub-channel assignment and power allocation. The formulated problem is mixed non-convex. Therefore, a novel three stage algorithm is proposed for the optimization of IRS elements, sub-channel assignment and power allocation. First, the IRS elements are optimized using the bisection method based iterative algorithm. Then, the sub-channel assignment problem is solved using one-to-one stable matching algorithm. Finally, the power allocation problem is solved under the given sub-channel and optimal number of IRS elements using Lagrangian dual-decomposition method based on Lagrangian multipliers. Moreover, in an effort to demonstrate the low-complexity of the proposed resource allocation scheme, we provide the complexity analysis of the proposed algorithms. The simulated results illustrate the various factors that impact the optimal number of IRS elements and the superiority of the proposed resource allocation approach in terms of network sum rate and user fairness. Furthermore, we analyze the proposed approach against a new performance metric called computational efficiency (CE).  相似文献   

11.
We consider a cognitive radio network in a multi-channel licensed environment. Secondary user transmits in a channel if the channel is sensed to be vacant. This results in a tradeoff between sensing time and transmission time. When secondary users are energy constrained, energy available for transmission is less if more energy is used in sensing. This gives rise to an energy tradeoff. For multiple primary channels, secondary users must decide appropriate sensing time and transmission power in each channel to maximize average aggregate-bit throughput in each frame duration while ensuring quality-of-service of primary users. Considering time and energy as limited resources, we formulate this problem as a resource allocation problem. Initially a single secondary user scenario is considered and solution is obtained using decomposition and alternating optimization techniques. Later we extend the analysis for the case of multiple secondary users. Simulation results are presented to study effect of channel occupancy, fading and energy availability on performance of proposed method.  相似文献   

12.
《Physical Communication》2008,1(4):277-287
An interesting feature of the third generation (3G) cellular networks is their ability to support multiple data rates for data services. Thus, it is important to understand the end-to-end delay and throughput performance over these multi-rate cellular systems. In this work, we consider a multi-rate system such as High Data Rate (HDR) and represent the possible data rates using a Markov chain. Using a M/G/1 queuing model, we calculate the expected data rate and the corresponding link layer delay for each of the initial states. We study the effects of various link layer scheduling techniques for the radio link protocol (RLP) frames destined for multiple user. Though the commonly used link layer scheduling techniques work well, they do not provide the best performance for when end-to-end semantics need to be maintained. In this regard, we propose a scheduling algorithm that aids the transport protocol, for example TCP. Our research shows that the proposed remaining frames first scheduler enhances the transport layer performance compared to the commonly used “best channel scheduler”. Comparative results, based on simulations, are shown with respect to radius of cell, distance of user, number of users, and varying bit error rate.  相似文献   

13.
Cognitive Radio (CR) networks are envisioned as a key empowering technology of the fifth-generation (5G) wireless communication networks, which solves the major issues of 5G, like high-speed data transmission, seamless connectivity, and increased demand for mobile data. Another significant characteristic of the 5G network is green communications, as energy consumption from the communication field is predicted to rise remarkably by the year 2030. In this work, we are concerned about energy-related issues and propose a cooperation-based energy-aware reward scheme (CEAR) for next-generation green CR networks. The proposed CEAR scheme is based on the antenna and temporal diversity of the primary users (PUs). For providing the service to the PUs, the users of another network called cognitive users (CUs) work as a cooperative relay node, and, in return, they get more spectrum access opportunities as a reward from the primary network. The CUs with delay-tolerant data packets take a cooperative decision by recognizing the availability and traffic load of PUs, channel state information, and data transmission requirements. We utilize the optimal stopping protocol for solving the decision-making problem and use the backward induction method to obtain the optimal cooperative solution. The simulation results reveal notable enhancements in energy efficiency (EE) of CUs compared with other cooperative schemes. The proposed CEAR scheme is more energy-efficient for ultra-dense network deployment because results show that the CU’s EE, spectral efficiency (SE), and throughput improved with the increase of PUs.  相似文献   

14.
朱思峰  刘芳  柴争义  戚玉涛  吴建设 《物理学报》2012,61(9):96401-096401
本文设计了垂直切换判决方案问题的数学模型, 给出了一种基于简谐振子免疫优化算法的垂直切换判决方案, 并与文献方案进行了对比实验实验结果表明, 本文方案能够有效地平衡网络负载、增加终端电池的生存时间, 具有较好的应用价值.  相似文献   

15.
To meet the futuristic communications needs, a satellite–terrestrial integrated network (STIN) has been proposed and is a strong contender amongst emerging architectures. In our STIN model, we have considered a satellite-based base station (BS), dovetailed with a terrestrial N-tier heterogeneous network (HetNets). Our work considers jointly admission control of user equipment (UE), power allocation , fairness-based user association (UA), and fair spectrum resource allocation to UEs in STIN. With throughput maximization as an objective, considering such an environment, has not been investigated in the past. The formulated problem is a mixed integer non-linear programming (MINLP) problem that is Non-deterministic Polynomial-time Hard (NP-hard) and to achieve an optimal solution, it requires an exhaustive search. But, the computational load of exhaustive search increases exponentially as the number of UEs increases. Therefore, to obtain a near-optimal solution having low computational load an outer approximation algorithm (OAA) is proposed. To evaluate the proposed algorithm, extensive simulation work has been performed. The effectiveness of the proposed approach is verified by the results in terms of fairness in UA, fairness in resource block (RB) allocation, and throughput in the downlink (DL).  相似文献   

16.
In this article, we propose a deep Q-learning based algorithm for optimal resource allocation in energy harvested cognitive radio networks (EH-CRN). In EH-CRN, channel resources of primary users (PU) networks are shared with secondary users (SU) and energy harvesting allows nodes of the CRN to acquire energy from the environment for operation sustainability. However, amount of energy harvested from the environment is not fixed and requires dynamic allocation of resources for obtaining optimum network and throughput capacity. In this work, we overcome the limitations of existing Q-learning based resource allocation schemes which are constrained by large state-space systems and have slow convergence. Proposed deep Q-learning based algorithm improves the resource allocation in EH-CRN, while considering quality of service (QoS), energy and interference constraints. Simulation results show that proposed algorithm provide improved convergence and better resource utilization compared to other techniques in literature.  相似文献   

17.
In a multicarrier NOMA system, the subchannel allocation (SA) and power allocation (PA) are intricately linked and essential for improving system throughput. Also, for the successful execution of successive interference cancellations (SIC) at the receiver, a minimum power gap is required among users. As a result, this research comes up with optimization of the SA and PA to maximize the sum rate of the NOMA system while sticking to the minimum power gap constraint in addition to minimum user rate, maximum number of users in a subchannel and power budget constraints for downlink transmission in multicarrier NOMA networks. To ensure that the formulated problem can be solved in polynomial time, we propose solving it in two stages; SA followed by PA. To obtain SA, we investigate four algorithms: Greedy, WSA, WCA, and WCF. For PA, we propose a low-complexity algorithm. We compare the performance of the proposed method with benchmark method that does not consider the minimum power gap constraint. We conclude that employing WCF algorithm with the PA algorithm gives the best sum rate performance.  相似文献   

18.
Cognitive Radio Network (CRN) has emerged as an effective solution to the spectrum under-utilization problem, by providing secondary users (SUs) an opportunistic access to the unoccupied frequency bands of primary users (PUs). Most of the current research on CRN are based on the assumption that the SU always has a large amount of data to transmit. This leads to the objective of SU throughput maximization with a constraint on the allowable interference to the PU. However, in many of the practical scenarios, the data arrival process of the SU closely follows an ON–OFF traffic model, and thus the usual throughput optimization framework may no longer be suitable. In this paper, we propose an intelligent data scheduling strategy which minimizes the average transmission power of the SU while maintaining the transmission delay to be sufficiently small. The data scheduling problem has been formulated as a finite horizon Markov Decision Process (MDP) with an appropriate cost function. Dynamic programming approach has been adopted to arrive at an optimal solution. Our findings show that the average transmitted power for our proposed approach can be as small as 36.5% of the power required for usual throughput maximization technique with insignificant increase in average delay.  相似文献   

19.
Users near cell edges suffer from severe interference in traditional cellular networks. In this paper, we consider the scenario that multiple nearby base stations (BSs) cooperatively serve a group of users which is referred to as the cell free networks. A low complexity optimization method based on the large dimensional analysis is proposed. The advantage of the cell free networks is that the interference caused in the cell edge users can be converted into intended signal. It is not easy to obtain the optimal solution to the network due to coupled relations among the users’ rates. To obtain a suboptimal solution, a precoder that balances signal and interference is adopted to maximize the network capacity. In traditional optimization, it requires instantaneous channel state information. We try to optimize the network sum rate based on the large dimensional analysis. In this way, the optimization can be transformed into another problem that merely depend on the large scale channel statistics. Large dimensional analysis is leveraged to derive the asymptotic signal to interference plus noise ratio that only depends on large scale channel statistics. Based on this result, the power allocation problem does not need to adapt as frequently as the instantaneous channel state information. By this means, signal exchange overhead can be greatly reduced. Numerical results are provided to validate the efficacy of the proposed optimization method.  相似文献   

20.
In modern cooperative wireless networks, the resource allocation is an issue of major significance. The cooperation of source and relay nodes in wireless networks towards improved performance and robustness requires the application of an efficient bandwidth sharing policy. Moreover, user requirements for multimedia content over wireless links necessitate the support of advanced Quality of Service (QoS) features. In this paper, a novel bandwidth allocation technique for cooperative wireless networks is proposed, which is able to satisfy the increased QoS requirements of network users taking into account both traffic priority and packet buffer load. The performance of the proposed scheme is examined by analyzing the impact of buffer load on bandwidth allocation. Moreover, fairness performance in resource sharing is also studied. The results obtained for the cooperative network scenario employed, are validated by simulations. Evidently, the improved performance achieved by the proposed technique indicates that it can be employed for efficient traffic differentiation. The flexible design architecture of the proposed technique indicates its capability to be integrated into Medium Access Control (MAC) protocols for cooperative wireless networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号