首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents experiments conducted with two single rectangular mini-channels of same hydraulic diameter (1.4 mm) and different aspect ratios for conditions of horizontal boiling flow. The Forane® 365 HX used was subcooled (ΔTsub = 15 °C) for all the boiling curves presented in the paper. Local heat transfer coefficients were measured for heat flux ranging from 25 to 62 kW m−2 and mass flux from 200 kg m−2 s−1 to 400 kg m−2 s−1. The boiling flows were observed with two different cameras (depending on the flow velocity) through a visualization window. The flow patterns in the two channels were compared for similar conditions. The results show that the boiling heat transfer coefficient and the pressure drop values are different for the two single mini-channels. For low heat flux condition, the channel with lowest aspect ratio (H/W = 0.143) has a higher heat transfer coefficient. On the other hand, for high heat flux condition, the opposite situation occurs, namely the heat transfer coefficient becomes higher for the channel with highest aspect ratio (H/W = 0.43). This is probably due to the earlier onset of dryout in the channel with lowest aspect ratio. For the two cases of heating, the pressure drop for the two-phase flow remains lower for the channel with lowest aspect ratio. These results show that the aspect ratio plays a substantial role for boiling flows in rectangular channels. As for single-phase flows, the heat transfer characteristics are significantly influenced (even though the hydraulic diameter remains the same) by this parameter.  相似文献   

2.
Here, we present a numerical investigation of the mechanical behavior of ellipsoids under triaxial compression for a range of aspect ratios. Our simulations use a multi-sphere approach in a three-dimensional discrete element method. All assemblies were prepared at their densest condition, and triaxial compression tests were performed up to extremely large strains, until a critical state was reached. The stress–strain relationship and the void ratio–strain behavior were evaluated. We found that the stress–dilatancy relationship of ellipsoids with different aspect ratios could be expressed as a linear equation. In particular, the aspect ratio influenced the position of the critical state lines for these assemblies. Particle-scale characteristics at the critical state indicate that particles tend to be flat lying, and the obstruction of particle rotation that occurs with longer particles affects their contact mechanics. Lastly, anisotropic coefficients related to aspect ratio were investigated to probe the microscopic origins of the macroscopic behavior. A detailed analysis of geometrical and mechanical anisotropies revealed the microscopic mechanisms underlying the dependency of peak and residual strengths on aspect ratio.  相似文献   

3.
Brownian dynamics simulations of shear flows are carried out for various suspensions of ellipsoids interacting via the Gay-Berne potential. In this simulation all the systems of the suspension are in a liquid crystalline phase at rest. In a shear flow they exhibit various motions of the director depending on the shear rate: the continuous rotation, the intermittent rotation, the wagging-like oscillation, and the aligning. The director is almost always out of the vorticity plane when it rotates, that is the kayaking. The number density of the system and the inter-particle potential intensity significantly affect the shear rate dependence of orientation. In particular, the continuous rotation of director is maintained to higher shear rates for the system with a stronger potential. Furthermore, the rheological properties are examined. The shear-thinning in viscosity is observed, but the negative first normal difference is not obtained.  相似文献   

4.
Morphology as well as kinematics is a critical determinant of performance in flapping flight.To understand the effects of the structural traits on aerodynamics of bioflyers,three rectangular wings with aspect ratios(AR)of1,2,and 4 performing hovering-like sinusoidal kinematics at wingtip based Reynolds number of 5 300 are experimentally investigated.Flow structures on sectional cuts along the wing span are compared.Stronger K-H instability is found on the leading edge vortex of wings with higher aspect ratios.Vortex bursting only appears on the outer spanwise locations of high-aspect-ratio wings.The vortex bursting on high-aspect-ratio wings is perhaps one of the reasons why bio-flyers normally have low-aspect-ratio wings.Quantitative analysis exhibits larger dimensionless circulation of the leading edge vortex(LEV)over higher aspect ratio wings except when vortex bursting happens.The average dimensionless circulation of AR1 and AR2 along the span almost equals the dimensionless circulation at the 50%span.The flow structure and the circulation analysis show that the sinusoidal kinematics suppresses breakdown of the LEV compared with simplified flapping kinematics used in similar studies.The Reynolds number effect results on AR4 show that in the current Re range,the overall flow structure is not sensitive to Reynolds number.  相似文献   

5.
A closed-form solution using the actual distribution of the fiber aspect ratio is proposed for predicting the stiffness of aligned short fiber composite. The present model is the simplified form of Takao and Taya’s model and the extended version of Taya and Chou’s model, where Eshelby’s equivalent inclusion method modified for finite fiber volume fraction is employed. The validity of using average fiber aspect ratio for predicting the composite stiffness is justified in terms of the scatter of fiber aspect ratio, fiber volume fraction, and constituents‘ Young’s modulus ratio, comparing with the results by the present model. The guideline for selection of either the actual distribution or the average fiber aspect ratio is presented for the better prediction of the composite stiffness.  相似文献   

6.
This paper discusses a computationally efficient method for determining the behaviour of complex structures containing three-dimensional cracks. A simple method is presented for calculating the mode I stress intensities for semi-elliptical cracks emanating from the saddle point of two intersecting tubular members. This method, which gives results in good agreement with published values, uses the finite element technique, but does not require the crack to be modelled explicitly. The technique is then used, in conjunction with FASTRAN II, to study fatigue crack growth and the results are compared to experimental data. Good agreement is achieved between both the predicted and measured fatigue crack growth and the evolution of the crack aspect ratios.  相似文献   

7.
The flow fields behind elliptic cylinders adjacent to a free surface were investigated experimentally in a circulating water channel. A range of cylinder aspect ratios (AR=2, 3, 4) were considered, while the cross-sectional area of the elliptical cylinder was kept constant. The main objective of this study was to investigate the effect of cylinder aspect ratio and a free surface on the flow structure in the near-wake behind elliptic cylinders. For each elliptic cylinder, the flow structure was analyzed for various values of the submergence depth of the cylinder beneath the free surface. The flow fields were measured using a single-frame double-exposure PIV (Particle Image Velocimetry) system. For each experimental condition, 350 instantaneous velocity fields were obtained and ensemble-averaged to obtain the mean velocity field and spatial distribution of the mean vorticity statistics. The results show that near-wake can be classified into three typical flow patterns: formation of a Coanda flow, generation of substantial jet-like flow, and attachment of this jet flow to the free surface. The general flow structure observed behind the elliptic cylinders resembles the structure previously reported for a circular cylinder submerged near a free surface. However, the wake width and the angle of downward deflection of the shear layer developed from the lower surface of the elliptic cylinder differ from those observed for a circular cylinder. These trends are enhanced as cylinder aspect ratio is increased. In addition, the free surface distortion is also discussed in the paper.  相似文献   

8.
The wake characteristics of unconfined flows over triangular prisms of different aspect ratios have been numerically analysed in the present work. For this purpose, a fixed Cartesian-grid based numerical technique that involves the porous medium approach to mimic the effect of solid blockage has been utilised. Correspondingly, laminar flow simulations ranging from the sub-critical regime (before the onset of vortex shedding) to the super-critical regime have been considered here within the limits of two-dimensionality. In the sub-critical regime, correlations relating the wake bubble length with Reynolds number (Re) have been proposed for various aspect ratios. Also, the effects of aspect ratio and Reynolds Number on the drag force coefficient (CD) have been characterised for two different geometrical orientations of the prism (base or apex facing the flow). Subsequently, the critical Reynolds number at the onset of vortex shedding has been predicted for each of the aspect ratio considered, by an extrapolation procedure. The unsteady flow characteristics of the super-critical regime are finally highlighted for different aspect ratios and triangular orientations considered in the study.  相似文献   

9.
The discrete element method (DEM) is a capable tool used to simulate shear wave propagation in granular assemblies for many years. Researchers have studied assembly shapes such as rectangles (in 2D simulations) or cylinders and cubes (in 3D simulations). This paper aimed to qualify the effect of assembly shape on the shear wave propagation and maximum amplification in the vertical plane (horizontal and vertical directions) caused by this propagation. To this end, shear wave propagations in different assembly shapes such as rectangle, trapezium, and triangle with rigid boundary conditions were simulated. A sine wave pulse was applied with a point source by moving a particle as the transmitter particle. To evaluate the shear wave velocity of the assemblies, the transmitter and receiver particles were simulated. All the simulations were performed with 2D DEM which is a useful tool to determine the amount and location of the maximum amplification factor of the assembly in both horizontal and vertical directions. An advantage of this study was assessing the effect of parameters such as input wave frequency, assembly height, shape, and aspect ratios on the amplification of the input waves.  相似文献   

10.
Summary The influence of shear deformation on the buckling behavior of a beam supported laterally by a Winkler elastic foundation is studied. A full investigation of the bifurcation points at which, under axial load, the beam becomes critical with respect to one or two simultaneous buckling modes is made. The configurations and stabilities of the equilibrium paths that bifurcate from the critical points are derived. From the results of theoretical analysis, it becomes evident that shear deformation has a considerable effect upon the equilibriums and stabilities of the post-buckling of the beam. The results for the Bernoulli-Euler beam can be obtained as a limiting case for those of the present beam by letting the shear stiffness tend to infinity.Supported by the National Natural Science Foundation of China  相似文献   

11.
The particle flow code 2D (PFC2D) is used to establish a coplanar, non-persistent joint model. Three joint distribution types, namely, both-side (type a), scattered (type b), and central (type c), are set according to their position. Numerical simulations of the direct shear test are conducted to investigate the effect of non-persistent joint distribution and connectivity on shear mechanical behavior. Simulation results are in good agreement with the analytical solutions to Jennings' criterion, and show: (1) type-c and type-b joints have high strength, whereas type-a joints have low strength. Shear strength and modulus increase with a decrease in joint persistency, and the shear displacement that correspond to shear strength increases with a decrease in persistency. (2) The brittle failure characteristics of the sample are evident when the intact rock bridge area is large. Reinforcement at both ends of the joint limits shear deformation, and shear strength can be effectively improved when joint persistency is large. The small-area dispersed reinforcement joint method cannot effectively improve shear strength. (3) The comprehensive shear strength parameters and the shear strength of the non-persistent joints can be predicted well using Jennings' criterion. Cohesion is the dominant factor that controls shear strength.  相似文献   

12.
13.
The effects of the aspect ratio on unsteady solutions through the curved duct flow are studied numerically by a spectral based computational procedure with a temperature gradient between the vertical sidewalls for the Grashof number 100 ≤ Gr ≤ 2 000. The outer wall of the duct is heated while the inner wall is cooled and the top and bottom walls are adiabatic. In this paper, unsteady solutions are calculated by the time history analysis of the Nusselt number for the Dean numbers Dn = 100 and Dn = 500 and the aspect ratios 1≤γ≤ 3. Water is taken as a working fluid (Pr =7.0). It is found that at Dn = 100, there appears a steady-state solution for small or large Gr. For moderate Gr, however, the steady-state solution turns into the periodic solution if γ is increased. For Dn = 500, on the other hand, it is analyzed that the steady-state solution turns into the chaotic solution for small and large Gr for any γ lying in the range. For moderate Gr at Dn = 500, however, the steady-state flow turns into the chaotic flow through the periodic oscillating flow if the aspect ratio is increased.  相似文献   

14.
Enhancement of wind by bushfire, referred to as bushfire-wind enhancement phenomenon, causes damages to buildings located in bushfire-prone areas by increasing pressure load around the structures. This study focuses on the effects of point source aspect ratio (AR) on the wind enhanced by fire. FireFOAM solver of OpenFOAM platform is used to perform Large Eddy Simulation analysis for different fire source aspect ratios under two different fire source conditions: (i) identical fire intensity (fire heat release rate per unit area) and (ii) identical fire heat release rate conditions. Simulations were performed for three different fire source aspect ratios under these fire source boundary conditions. An appropriate normalization group based on fire source hydraulic diameter was introduced for fire-induced pressure gradient to explain the variation of wind enhancement with fire source aspect ratio. The results reveal that under a constant fire intensity condition, increasing the fire source aspect ratio causes a higher normalized fire-induced pressure gradient which leads to more intensified wind enhancement. In contrast, the increase of fire source aspect ratio while fire heat release rate is kept constant culminates in a reduction in the normalized fire-induced pressure gradient, reducing wind enhancement. Moreover, with the increase of the fire source aspect ratio, the area of counter-rotating vortices (CRV) where maximum wind enhancement occurs is expanded. The results also show that with the increase of fire source aspect ratio, the length of flame attachment to the ground immediately downstream of fire increases. In addition to the longitudinal wind enhancement, the effects of fire source aspect ratio on vertical velocity were also analyzed based on the Richardson number defined by hydraulic diameter and flow reference velocity. The effects of the aspect ratio on flame length were also studied. It was shown as a result of the increase of aspect ratio for one unit, flame length increases by approximately 14% and reduces by 7% under constant fire intensity and constant fire heat release rate condition, respectively.  相似文献   

15.
16.
The static stability of thin-walled composite beams, considering shear deformation and geometrical non-linear coupling, subjected to transverse external force has been investigated in this paper. The theory is formulated in the context of large displacements and rotations, through the adoption of a shear deformable displacement field (accounting for bending and warping shear) considering moderate bending rotations and large twist. This non-linear formulation is used for analyzing the prebuckling and postbuckling behavior of simply supported, cantilever and fixed-end beams subjected to different load condition. Ritz's method is applied in order to discretize the non-linear differential system and the resultant algebraic equations are solved by means of an incremental Newton-Rapshon method. The numerical results show that the beam loses its stability through a stable symmetric bifurcation point and the postbuckling strength is in relation with the buckling load value. Classical predictions of lateral buckling are conservative when the prebuckling displacements are not negligible and the non-linear buckling analysis is required for reliable solutions. The analysis is supplemented by investigating the effects of the variation of load height parameter. In addition, the critical load values and postbuckling response obtained with the present beam model are compared with the results obtained with a shell finite element model (Abaqus).  相似文献   

17.
The effect of initial fabric anisotropy produced by sample preparation on the shear behavior of granular soil is investigated by performing discrete element method (DEM) simulations of fourteen biaxial tests in drained conditions. Numerical test specimens are prepared by three means: gravitational deposition, multi-layer compression, and isotropic compression, such that different initial inherent soil fabrics are created. The DEM simulation results show that initial fabric anisotropy exerts a considerable effect on the shear behavior of granular soil, and that the peak stress ratio and peak dilatancy increase with an increase in the fabric index an that is estimated from the contact orientations. The stress–dilatancy relationship is found to be independent of the initial fabric anisotropy. The anisotropy related to the contact orientation and contact normal force accounts for the main contribution to the mobilized friction angle. Also, the occurrence of contractive shear response in an initial shearing stage is accompanied by the most intense particle rearrangement and microstructural reorganization, regardless of the sample preparation method. Furthermore, the uniqueness of the critical state line in e–log p′ and q–p′ plots is observed, suggesting that the influence of initial fabric anisotropy is erased at large shear strains.  相似文献   

18.
张显涛  刘伟 《应用力学学报》2020,(2):509-516,I0003
提出了一种大展弦比机翼管路的抗大变形设计与优化方法。首先建立了大展弦比机翼平板-不同布局管路的装配简化模型;然后分析了在机翼大变形下,管道的弯曲位置、弯曲半径、横向距离、弯曲角度等几种不同布局参数,对管路根部应力、最大应力和卡箍处变形的影响关系。结果表明:弯曲位置与横向距离对应力有较大影响,弯曲位置靠近机翼根部可以降低管道根部应力,但是最大应力显著增加,横向距离的增加可以降低管路根部应力以及最大应力;弯曲位置和弯曲半径对卡箍处变形有较大影响,随着弯曲位置从机翼板根部向变形处移动,卡箍处变形量均先减小后增加,弯曲半径的增加会降低卡箍处变形量。采用遗传算法得到在机翼大变形下最优的管形布局,结果表明,卡箍附近最大应力比直管降低了51%。  相似文献   

19.
Influence of grading on the undrained behavior of granular materials   总被引:1,自引:0,他引:1  
This paper aims at investigating the influence of grading on the undrained behavior of granular materials. Series of undrained triaxial tests were carried out with two different materials, glass balls and Hostun sand. For each material, samples with different gradings and similar relative densities were prepared. Experimental results show that the undrained shear strength decreases when the coefficient of uniformity Cu=d60/d10Cu=d60/d10 increases from 1.1 to 20. The conditions of instability for the selected granular materials were also analyzed, based on the sign of the second-order work during undrained triaxial loading. The results demonstrate a significant influence of the grading: increasing the coefficient of uniformity heightens the potential of static liquefaction and the materials become more unstable. Furthermore, numerical tests using the three-dimensional discrete element method (DEM) were conducted on assemblies of spheres. The DEM inter-particle parameters were derived from the experimental test results on glass balls. The DEM simulations showed similar behaviors compared to experimental results and confirmed the influence of the grain size distribution on the stress–strain relationship and instability phenomena.  相似文献   

20.
以高空长航时大展弦比太阳能无人机机翼为研究对象,针对分布式电驱螺旋桨滑流和大展弦比机翼之间耦合的复杂气动干涉问题,采用滑移网格方法、动网格技术、SST k-ω RANS湍流模型和CFD/CSD (Computational Fluid Dynamics/Computational Structural Dynamics)双向流固耦合技术,研究了螺旋桨不同转速、布局方式和气动阻尼对机翼气动弹性响应的影响。数值计算结果表明,螺旋桨滑流会改变机翼表面的压力分布;螺旋桨流场对机翼的扰动频率接近机翼的结构固有频率时,机翼会发生共振;螺旋桨的位置越靠近翼尖,或螺旋桨的数量增多,都将增加机翼气动弹性响应的幅值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号