首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelets contribute a major role in hemostasis by clumping and coagulation at the site of blood vessel injuries. In light of recent findings of a close relationship between platelets and immunological response, as well as interactions between platelets and cancer cells, novel engineering strategies have emerged for the integration of platelets or platelet membrane (PM) with anti-cancer therapeutics. In this review, we discuss several recent innovations that use platelets or their membranes to circumvent host immune responses and target tumor cells with high specificity to deliver a range of pharmacological, photothermal, or immunologic agents for eradication of recalcitrant tumor cells. More specifically, we compare the relative advantages of using whole platelets versus single or hybrid PM to coat nanoparticle cargoes. These cargoes range from well-established anti-tumor apoptosis-inducing agents, to relatively new photothermal agents that can induce a feedback cascade in which they induce vascular damage to the tumor which recruits more platelet- or membrane-encapsulated agents to induce further damage. We also discuss the use of engineered platelets to produce programmed cell death-inducing platelet derived microparticles. This review provides an overview and future directions for this promising platelet-based biomimetic approach to anti-cancer therapy.  相似文献   

2.
Cardiovascular diseases (CVDs) are the most prominent cause of disability and mortality in the world. Although there have been a variety of therapeutic options for the management of CVDs, most of the traditional therapeutic strategies could not sufficiently stop or reduce the progression of these diseases and may result in some side effects. With the advance in nanotechnology, a number of metal-based nanoparticles have been developed and shown promising potentials in the treatment of CVDs. In this review, we provide a comprehensive review of researches on recent development of metal-based nanoparticles in diagnosis and therapy in CVDs as biomedical materials. We also discuss the challenges in the clinical translation and potential risks in their application of CVD therapy. Based on the ongoing research and applications, we can conclude metal-based nanoparticles are expected to become potential therapeutics for the treatment of CVDs. But their application is still in its infancy and much more efforts should be made to enforce a clinical breakthrough.  相似文献   

3.
Surfactant removal from the surface of platinum-based nanoparticles prepared using solution-based methods is a prerequisite to realize their high catalytic performance for electrochemical reactions. Herein, we report an effective approach combining acetic acid refluxing with an electrochemical process for the removal of amine- or thiol-based capping agents from the surface of supported-platinum nanoparticles. This strategy involves surfactant protonation by refluxing the supported-platinum particles in acetic acid followed by surfactant removal by subsequent electrochemical treatment at high potential. We demonstrate that this combined activation process is essential to enhance platinum particle performance in catalyzing direct methanol fuel cell reactions, including methanol oxidation and oxygen reduction reactions. The studies in this work show promise in electrocatalysis applications of solution-based materials synthesis.  相似文献   

4.
In this paper we provide a mathematical framework for localized plasmon resonance of nanoparticles. Using layer potential techniques associated with the full Maxwell equations, we derive small-volume expansions for the electromagnetic fields, which are uniformly valid with respect to the nanoparticle’s bulk electron relaxation rate. Then, we discuss the scattering and absorption enhancements by plasmon resonant nanoparticles. We study both the cases of a single and multiple nanoparticles. We present numerical simulations of the localized surface plasmonic resonances associated to multiple particles in terms of their separation distance.  相似文献   

5.
受体介导的内吞是细胞与外界物质交换的常见方式. 采用配体修饰表面的纳米脂质体颗粒,将药物有针对性地投放到肿瘤细胞 以提高药物传输的效率,是药物传 输系统设计中的核心问题之一. 本文假设内吞是准静态过程,采用三维数学模型来模拟球状纳米颗粒的内吞,建立了包含绑定键的系统变形能方程,通过求 解能量方程的最小值,得到药物在每个内吞包裹阶段的变形以及药物的被动内吞所需最小能量,分析不同药物半径对内吞所 需最小能量的影响. 研究表明,细胞膜变形能与绑定键变形能占总能量的绝大部分,各组分随着包裹区域增加均有变化;在给定细胞膜和药物颗 粒的硬度、绑定键强度等物理特性下存在最优药物尺寸,使得内吞过程中总能耗最小;在药物内吞进行的后期,包裹区域边 缘的绑定键因伸长过大发生断裂,影响内吞的顺利完成. 本研究为受体介导的高效药物设计提供了理论支撑.   相似文献   

6.
Engineered magnetic nanoparticles (MNPs) hold great potential in environmental, biomedical, and clinical applications owing to their many unique properties. This contribution provides an overview of iron oxide MNPs used in environmental, biomedical, and clinical fields. The first part discusses the use of MNPs for environmental purposes, such as contaminant removal, remediation, and water treatment, with a focus on the use of zero-valent iron, magnetite (Fe3O4), and maghemite (γ-Fe2O3) nanoparticles, either alone or incorporated onto membrane materials. The second part of this review elaborates on the use of MNPs in the biomedical and clinical fields with particular attention to the application of superparamagnetic iron oxide nanoparticles (SPIONs), which have gained research focus recently owing to their many desirable features such as biocompatibility, biodegradability, ease of synthesis and absence of hysteresis. The properties of MNPs and their ability to work at both cellular and molecular levels have allowed their application in vitro and in vivo including drug delivery, hyperthermia treatment, radio-therapeutics, gene delivery, and biotherapeutics. Physiochemical properties such as size, shape, and surface and magnetic properties as well as agglomeration of MNPs and methods to enhance their stability are also discussed.  相似文献   

7.
采用四球摩擦磨损试验机对表面修饰的纳米AlOOH粒子及纳米Fe3O4粒子在液体石蜡中的摩擦学性能进行了对比研究.结果表明:这2种纳米粒子均能提高液体石蜡的减摩耐磨性能和PB值,纳米AlOOH粒子因具有层状结构,表现出更好的减摩耐磨性能,随着纳米粒子粒径的增大,其减摩耐磨的最佳浓度出现升高的趋势.对磨斑表面的SEM、AFM和XPS分析结果表明,纳米粒子能沉积在摩擦副表面,减少摩擦副表面微凸体的直接接触,从而减少微凸体之间的犁削和黏着.  相似文献   

8.
One of the most important features of nanofluids is their thermal conductivity. In this article, a new model for thermal conductivity is proposed based on the combination of a statistical model and thermal convection caused by Brownian motion of nanoparticles with considering the effect of interfacial nanolayers among nanoparticles and base fluids. This model is compared with Al2O3 in deionized water and CuO in deionized water (based nanofluids of spherical particles) using a number of theoretical and experimental thermal conductivity models, after that the experimental results have been made available in the open literature. In this model, an interfacial nanolayer is influenced directly on both parts of static and dynamic effective thermal conductivity. The present model shows good agreement with the experimental result of nanofluids and gives better predictions compared to models used for nanofluids in this article. This model is purely theoretical and in order to achieve it, experimental results have no effect.  相似文献   

9.
Interaction of nanoparticles (NPs) with cell membrane is a crucial issue in studying drug delivery, photodynamic therapy system and cytotoxicity. Single NP with relatively small size cannot be fully wrapped by the cell membrane, which prohibits its uptake. One feasible way is cooperative entry, i.e., recruiting and assembling multiple small NPs to form a larger NP cluster to enter into a cell. In this work, we present theoretical analysis about the cooperative entry of multiple NPs. Through free energy calculation we investigate how the NPs׳ size, shape, interval and NP/cell interfacial binding energy influence the feasibility of entry. Interestingly we find that the cooperative entry of oblate ellipsoidal NPs can get larger energy compensation than individual ones as well as spherical ones. We also propose that soft NPs have preference in cooperative entry of the cell. Our work can be used to actively design and transfer NPs in applications such as drug delivery as well as to understand the shape effect on toxic mechanism of ellipsoidal NPs.  相似文献   

10.
The synthesis of magnetic spinel ferrites at the nanoscale is a field of intense study, because the mesoscopic properties enable their novel applications. Spinel nanoparticles have a promising role because of their extraordinary properties compared with those of micro and macro scale particles. Several colloidal chemical synthetic procedures have been developed to produce monodisperse nanoparticles of spinel ferrites and other materials using sol–gel, co-precipitation, hydrothermal, and microemulsion techniques. To improve the synthesis method and conditions, quality and productivity of these nanoparticles, understanding the effect of extrinsic (pH, temperature, and molecular concentration) and intrinsic parameters (site preferences, latent heat, lattice parameters, electronic configuration, and bonding energy) on the particle size during synthesis is crucial. In this review, we discuss the effect of the intrinsic parameters on particle size of spinel ferrites to provide an insight to control their particle size more precisely.  相似文献   

11.
Iron oxide nanoparticles have become of great interest in the medical field for their potential uses in areas such as biomagnetic imaging and hypothermia cancer treatment. Traditionally, particles for these applications are produced through batch-based methodologies. Herein, we demonstrate an alternative continuous flow production method for the synthesis of Fe3O4 iron oxide nanoparticles. Advantages of continuous flow over the batch method include consistent formation of uniformly spherical particles, thorough mixing of reactants, and capacity for high-volume particle production. In this study, a continuous flow reaction mechanism was proposed in which stoichiometric control of reactants had the potential to control final particle size. The project was conducted under the supposition that the iron oleate/ligand ratio in the precursor was the greatest size control factor, with a higher ratio resulting in smaller particles. The resulting particles produced by this continuous method were characterized by high-resolution transmission electron microscopy, X-ray diffraction, and magnetometry.  相似文献   

12.
Magnetic particles have numerous applications in biotechnology and biomedicine. In this paper we reviewed the synthesis, surface modification and some applications of magnetic particles with focus on their synthesis and surface modification. Various methods have been developed for the production of magnetic particles (magnetic nanoparticles and magnetic composite particles). For future application magnetic particles must be modified to obtain stability and surface functional groups. Finally, the application of magnetic particles in magnetic separation, drug delivery, hyperthermia, and magnetic resonance imaging are discussed.  相似文献   

13.
Printed electronics have recently attracted extensive attention due to their superior productivity to conventional semiconductor fabrication methods. To develop printing devices optimized for printed electronics, numerical studies on ink flows are often necessary, and, therefore, it is critical to provide accurate ink properties for reliable numerical results. However, it is difficult to find such data in literature since inks for printed electronics contains conductive metallic nanoparticles and they are not only non-Newtonian but expensive. Thus, we propose utilizing a microfluidic chip to investigate rheological properties of conductive inks. By using micro particle image velocimeter along with an immersion oil technique, we examine the flow characteristics of two commercial conductive inks containing Ag nanoparticles on microfluidic chips. We found that the ink flows show a stronger shear-thinning behavior as the Ag content increases. Finally, suitable rheological models applicable to numerical simulations for those inks are suggested after comparing the experimental data to frequently used rheological models.  相似文献   

14.
In this study,new types of hybrid gold poly(methyl methacrylate) (PMMA) nanomaterials are synthesized.Both PMMA spheres coated with gold nanoparticles and gold nanoparticles coated with PMMA can be synthesized using different ratios of HAuCl4 and MMA precursors,by exposing the mixtures to hard X-ray synchrotron radiation without the use of a reducing agent.According to the photochemical mechanism,gold nanoparticles will precipitate from a solution of HAuCl4 on exposure to synchrotron radiation,followed by the synthesis of PMMA by the polymerization of MMA monomers.These reactions can result in the formation of two different types of new hybrid nanomaterials.When a 1:1 volume ratio of HAuCl4 to MMA is used,we obtain PMMA spheres coated with gold nanoparticles.When a 10:1 ratio of HAuCl4 and MMA is used,we obtain gold nanoparticles coated with PMMA.The hybrid gold/PMMA nanostructures are characterized by transmission electron microscopy,elemental analysis,dynamic-light scattering analysis,gel permeation chromatography and Raman spectroscopy.The hybrid nanomateriais have potential application in the fields of biosensors and drug delivery.  相似文献   

15.
The properties of nanoparticles are often different from those of larger grains of the same solid material because of their very large specific surface area. This enables many novel applications, but properties such as agglomeration can also hinder their potential use. By creating nanostructured particles one can take optimum benefit from the desired properties while minimizing the adverse effects. We aim at developing high-precision routes for scalable production of nanostructured particles. Two gas-phase synthesis routes are explored. The first one - covering nanoparticles with a continuous layer - is carried out using atomic layer deposition in a fluidized bed. Through fluidization, the full surface area of the nanoparticles becomes available. With this process, particles can be coated with an ultra-thin film of constant and well-tunable thickness. For the second route - attaching nanoparticles to larger particles - a novel approach using electrostatic forces is demonstrated. The micron-sized particles are charged with one polarity using tribocharging. Using electrospraying, a spray of charged nanoparticles with opposite polarity is generated. Their charge prevents agglomeration, while it enhances efficient deposition at the surface of the host particle. While the proposed processes offer good potential for scale-up, further work is needed to realize large-scale processes.  相似文献   

16.
Fluidization of fine cohesive powders is seriously restricted by the strong interparticle cohesion. The rational combination of nanoparticles with fine cohesive powders is expected to obtain composite particles with improved flowability. In this work, we firstly reviewed the sandwich and three-point contact models regarding the fundamental principles of nano-additives in reducing cohesiveness. Based on these previous models, the effects of the size of nanoparticles, their agglomeration and coverage on the surface of cohesive powders in reducing interparticle forces were theoretically analyzed. To validate the theory effectiveness for the irregularly shaped cohesive powders, an extreme case of cubic powders coated with silica nanoparticles was fabricated, and the flowability of the composite particles was determined experimentally. Ultimately, based on force balance of a single particle, a semi-theoretical criterion for predicting the fluidization behavior of coated powders was developed to guide the practical applications of improving the flowability of cohesive powders through structural design and modulation.  相似文献   

17.
In this study, new types of hybrid gold poly(methyl methacrylate) (PMMA) nanomaterials are synthesized. Both PMMA spheres coated with gold nanoparticles and gold nanoparticles coated with PMMA can be synthesized using different ratios of HAuCl4 and MMA precursors, by exposing the mixtures to hard X-ray synchrotron radiation without the use of a reducing agent. According to the photochemical mechanism, gold nanoparticles will precipitate from a solution of HAuCl4 on exposure to synchrotron radiation, followed by the synthesis of PMMA by the polymerization of MMA monomers. These reactions can result in the formation of two different types of new hybrid nanomaterials. When a 1:1 volume ratio of HAuCI4 to MMA is used, we obtain PMMA spheres coated with gold nanoparticles. When a 10:1 ratio of HAuCl4 and MMA is used, we obtain gold nanoparticles coated with PMMA. The hybrid gold/PMMA nanostructures are characterized by transmission electron microscopy, elemental analysis, dynamic-light scattering analysis, gel permeation chromatography and Raman spectroscopy. The hybrid nanomaterials have potential application in the fields of biosensors and drug delivery.  相似文献   

18.

It has been shown in recent years that many species in Nature employ hierarchy and contact splitting as a strategy to enhance the adhesive properties of their attachments. Maximizing the adhesive force is however not the only goal. Many animals can achieve a tunable adhesive force, which allows them to both strongly attach to a surface and easily detach when necessary. Here, we study the adhesive properties of 3D dendritic attachments, which are structures that are widely occurring in nature and which allow to achieve these goals. These structures exploit branching to provide high variability in the geometry, and thus tunability, and contact splitting, to increase the total peeling line and thus the adhesion force. By applying the same principles presented by A.A. Griffith 100 years ago, we derive an analytical model for the detachment forces as a function of their defining angles in 3D space, finding as limit cases 2D double peeling and 1D single peeling. We also develop a numerical model, including a nonlinear elastic constitutive law, for the validation of analytical calculations, allowing additionally to simulate the entire detachment phase, and discuss how geometrical variations influence the adhesive properties of the structure. Finally, we also realize a proof of concept experiment to further validate theoretical/numerical results. Overall, we show how this generalized attachment structure can achieve large variations in its adhesive and mechanical properties, exploiting variations of its geometrical parameters, and thus tunability. The in-depth study of similar basic structural units and their combination can in future lead to a better understanding of the mechanical properties of complex architectures found in Nature.

  相似文献   

19.
We studied the influence of nanoparticles with different surface modifications on the interfacial tension and relaxation of model polymer blend after cessation of different strains. The droplet retraction experiments were carried out on a model system composed of polydimethylsiloxane (PDMS) as the suspending fluid and polyisobutylene (PIB) as droplet at room temperature in the presence of hydrophobic and hydrophilic nanosilica. Different weight fractions of particles were dispersed in the PIB droplet before forming a dispersed droplet by using a microsyringe in shear cell. We found that applied strain, nanoparticle concentration and their thermodynamically preferred localization affect both nominal interfacial tension and droplet retraction process. By addition of nanoparticles at a concentration as low as 0.2%wt, the nominal interfacial tension decreases from 3.12?±?0.15 mN/m for neat PIB-PDMS interface depending on the surface characteristics of nanosilica. Hydrophilic nanosilica has the most effect on nominal interfacial tension and decreases it as low as 0.2?±?0.21 mN/m at 1 wt.% loading under a strain of 7. The results show that the retraction process in this system is mainly controlled by interfacial phenomena rather than bulk rheological properties. Additionally, the shape evolution of droplets changes and the retraction rate slows down in the presence of nanoparticles.  相似文献   

20.
The evolution equations of moments for the Brownian coagulation of nanoparticles in both continuum and free molecule regimes are analytically studied. These equations are derived using a Taylor-expansion technique. The self-preserving size distribution is investigated using a newly defined dimensionless parameter, and the asymptotic values for this parameter are theoretically determined. The dimensionless time required for an initial size distribution to achieve self-preservation is also derived in both regimes. Once the size distribution becomes self-preserving, the time evolution of the zeroth and second moments can be theoretically obtained, and it is found that the second moment varies linearly with time in the continuum regime. Equivalent equations, rather than the original ones from which they are derived, can be employed to improve the accuracy of the results and reduce the computational cost for Brownian coagulation in the continuum regime as well as the free molecule regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号