首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An in-house large eddy simulation (LES) based fire field model has been developed for large-scale compartment fire simulations. The model incorporates four major components, including subgrid-scale turbulence, combustion, soot and radiation models which are fully coupled. It is designed to simulate the temporal and fluid dynamical effects of turbulent reaction flow for non-premixed diffusion flame. Parametric studies were performed based on a large-scale fire experiment carried out in a 39-m long test hall facility. Several turbulent Prandtl and Schmidt numbers ranging from 0.2 to 0.5, and Smagorinsky constants ranging from 0.18 to 0.23 were investigated. It was found that the temperature and flow field predictions were most accurate with turbulent Prandtl and Schmidt numbers of 0.3, respectively, and a Smagorinsky constant of 0.2 applied. In addition, by utilising a set of numerically verified key modelling parameters, the smoke filling process was successfully captured by the present LES model.  相似文献   

2.
We consider the Boltzmann equation for a gas in a horizontal slab, subject to a gravitational force. The boundary conditions are of diffusive type, specifying the wall temperatures, so that the top temperature is lower than the bottom one (Benard setup). We consider a 2-dimensional convective stationary solution, which for small Knudsen numbers is close to the convective stationary solution of the Oberbeck–Boussinesq equations, near and above the bifurcation point, and prove its stability under 2-d small perturbations, for Rayleigh numbers above and close to the bifurcation point and for small Knudsen numbers.  相似文献   

3.
Junwu Wang 《Particuology》2010,(2):176-185
Turbulent fluidized bed reactors are widely used in industry. However, CFD simulations of the hydrody- namic characteristics of these reactors are relatively sparse, despite the urgent demand from industry. To address this problem, Eulerian simulations with an EMMS-based sub-grid scale model, accounting for the effect of sub-grid scale structures on the inter-phase friction, are performed to study the hydrodynamics inside a large-scale turbulent fluidized bed of FCC particles. It is shown that the simulated axial and radial solid concentration profiles, entrained solid fluxes and standard deviation of the solid concentration fluc- tuation agreed well with experimental data available in the literature. In-depth analysis of time-averaged particle velocity and solid concentration shows that a dense-suspension upflow regime coexists with fast fluidization regime in this bed, which is reminiscent of the hydrodynamic characteristics in high-density circulating fluidized bed (CFB) risers, even though they are operated in different fluidization regimes. The Reynolds stresses in turbulent fluidized beds are anisotropic, but the degree of anisotropy is far less pro- nounced than the reported values in CFB risers. It was also found that the solid concentration fluctuation and axial particle velocity fluctuation are strongly correlated. 2009 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.  相似文献   

4.
The objective of this work is to present an approach allowing for inclusion of the complete Gurtin–Murdoch material surface equations in methods leading to closed-form formulas defining effective properties of particle-reinforced nanocomposites. Considering that all previous developments of the closed-form formulas for effective properties employ only some parts of the Gurtin–Murdoch model, its complete inclusion constitutes the main focus of this work. To this end, the recently introduced new notion of the energy-equivalent inhomogeneity is generalized to precisely include all terms of the model. The crucial aspect of that generalization is the identification of the energy associated with the last term of the Gurtin–Murdoch equation, i.e., with the surface gradient of displacements. With the help of that definition, the real nanoparticle and its surface possessing its own distinct elastic properties and residual stresses are replaced by an energy-equivalent inhomogeneity with properties incorporating all surface effects. Such equivalent inhomogeneity can then be used in combination with any existing homogenization method. In this work, the method of conditional moments is used to analyze composites with randomly dispersed spherical nanoparticles. Closed-form expressions for effective moduli are derived for both bulk and shear moduli. As numerical examples, nanoporous aluminum is investigated. The normalized bulk and shear moduli of nanoporous aluminum as a function of residual stresses are analyzed and evaluated in the context of other theoretical predictions.  相似文献   

5.
Single-phase permeability k has intensively been investigated over the past several decades by means of experiments, theories and simulations. Although the effect of surface roughness on fluid flow and permeability in single pores and fractures as well as networks of fractures was studied previously, its influence on permeability in a random mass fractal porous medium constructed of pores of different sizes remained as an open question. In this study, we, therefore, address the effect of pore–solid interface roughness on single-phase flow in random fractal porous media. For this purpose, we apply a mass fractal model to construct porous media with a priori known mass fractal dimensions \(2.579 \le D_{\mathrm{m}} \le 2.893\) characterizing both solid matrix and pore space. The pore–solid interface of the media is accordingly roughened using the Weierstrass–Mandelbrot approach and two parameters, i.e., surface fractal dimension \(D_{\mathrm{s}}\) and root-mean-square (rms) roughness height. A single-relaxation-time lattice Boltzmann method is applied to simulate single-phase permeability in the corresponding porous media. Results indicate that permeability decreases sharply with increasing \(D_{\mathrm{s}}\) from 1 to 1.1 regardless of \(D_{\mathrm{m}}\) value, while k may slightly increase or decrease, depending on \(D_{\mathrm{m}}\), as \(D_{\mathrm{s}}\) increases from 1.1 to 1.6.  相似文献   

6.
A numerical method is presented for stability analysis of cable–bar structures. An optimization problem is formulated to find the minimum value of the incremental total potential energy that depends on the direction of the incremental displacements. The penalty method with slack variables is used for representing the discontinuity in member stiffness. The tangent stiffness matrix is shifted to be positive definite so that the minimum of its quadratic form is found by the inverse-power method. It is shown in the numerical examples that the minimum value of the incremental potential energy and the associated displacement increments can be found with good accuracy in about 10 steps of iteration.  相似文献   

7.
This paper examines the suitability of various drag models for predicting the hydrodynamics of the turbulent fluidization of FCC particles on the Fluent V6.2 platform.The drag models included those of Syamlal–O’Brien,Gidaspow,modified Syamlal–O’Brien,and McKeen.Comparison between experimental data and simulated results showed that the Syamlal–O’Brien,Gidaspow,and modified Syamlal–O’Brien drag models highly overestimated gas–solid momentum exchange and could not predict the formation of dense phase in the fl...  相似文献   

8.
A facile method for the synthesis of silver–silica (Ag–SiO2) Janus particles with functionalities suitable for textile applications is reported. Silica nanoparticles prepared by the Stöber method were functionalized with epoxy, amine, and thiol groups, which were confirmed by Fourier transform infrared analysis. The functionalized silica nanoparticles were used to produce Pickering emulsions, and the exposed surface was used for the attachment of silver nanoparticles (AgNPs) via the low-temperature chemical reduction method. The morphology and structure of the Ag–SiO2 Janus particles were characterized by scanning electron microscopy, scanning transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray analysis, and UV–vis spectroscopy. Because of their specific functionalities, these Ag–SiO2 Janus particles are proposed for applications on textile substrates, as they can overcome several drawbacks of direct application of AgNPs on textiles, such as leaching, agglomeration, and instability during storage.  相似文献   

9.
The anomalous dispersal of the discrete particles in a two-phase turbulent jet (growth of their concentration in the region of the axis, rapid damping of the concentration in the initial sections of the jet, and wavelike axial distribution) is studied with allowance for the initial conditions and the Magnus effect.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 36–41, January–February, 1984.I thank G. N. Abramovich and A. N. Sekundov for discussing the results.  相似文献   

10.
Based on the powerful Computational Structural Dynamics method coupled to a Computational Fluid Dynamics approach, the PolyMAX algorithm is used along with the simulation of two-way fluid–structure interactions, as a new virtual testing method for estimating the structural modal parameters and damping ratios of a vibrating structure in either air or some other fluid. The viscosity and motion of fluid are accounted for, as are the shape of the flow passage and a variety of boundary conditions. The method is shown to be able to simulate the vibration of a structure within a real operating environment in which the structure experiences a specified excitation load while the vibration responses of the structure are obtained through a two-way FSI model. Based on the PolyMAX method for estimating the modal parameters, these vibration responses are processed and analyzed. Finally, the dynamic parameters (i.e., the natural frequencies and the damping ratios) of the vibrating structure are identified. For validation, the natural frequencies and damping ratios of two simple submerged cantilever plates were simulated both in air and water and the simulated results were found to agree closely with experimental data.  相似文献   

11.
In this work, a new drag model for TFM simulation in gas–solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with experimental data than those of the Gidaspow drag model did.  相似文献   

12.
Eric Loomis 《Shock Waves》2009,19(5):423-432
A recent model based on full elastic anisotropy and crystal plasticity predicted the existence of multiple wave configurations during the interaction of stress waves with grain boundaries. Since the multiple wave configuration scenario cannot exist in nature, the principle of minimum entropy production is applied in the current work to find the most probable configuration. A large amplitude transmitted quasi-longitudinal wave is predicted for the given bicrystal orientation studied due to the wave propagating near a [001] direction and thus requiring large stress given the very low Schmid factor in this direction (for nickel aluminide (NiAl) as a model material). Anisotropic elastic–plastic velocity surfaces for quasi-longitudinal and quasi-shear waves in NiAl have also been constructed to gain an understanding of the general nature of plastic waves as a function of crystallographic direction.  相似文献   

13.
14.
The paper extends a stabilized fictitious domain finite element method initially developed for the Stokes problem to the incompressible Navier–Stokes equations coupled with a moving solid. This method presents the advantage to predict an optimal approximation of the normal stress tensor at the interface. The dynamics of the solid is governed by Newton׳s laws and the interface between the fluid and the structure is materialized by a level-set which cuts the elements of the mesh. An algorithm is proposed in order to treat the time evolution of the geometry and numerical results are presented on a classical benchmark of the motion of a disk falling in a channel.  相似文献   

15.
Pizzi  Stefan 《Meccanica》2000,35(4):313-323
In this paper we construct a mathematical model for the Ziegler–Natta polymerization process which includes the initial stage of fragmentation of the support. The problem consists in a system of partial differential equations with free boundaries and extends the previous model proposed in [2, 3]. Local existence and uniqueness of a regular solution are proved.  相似文献   

16.
17.
Yang  Jing  Zhu  Yu  Qin  Wei  Wang  Shaohui  Dai  Chaoqing  Li  Jitao 《Nonlinear dynamics》2022,108(3):2551-2562
Nonlinear Dynamics - A reduction correlation between the $$(3+1)$$ -dimensional variable-coefficient Gross–Pitaevskii equation with the partially nonlocal nonlinearity under a harmonic...  相似文献   

18.
This work examines the effect of inter-particle collisions on the motion of solid particles in two-phase turbulent pipe and channel flows. Two mechanisms for the particle–particle collisions are considered, with and without friction sliding. Based on these collision mechanisms, the correlations of the various velocity components of colliding particles are obtained analytically by using an averaging procedure. This takes into account three collision coordinates, two angles and the distance between the centers of colliding particles. The various stress tensor components are obtained and then introduced in the mass, linear momentum and angular momentum equations of the dispersed phase. The current approach applies to particle–particle collisions that result from both the average velocity difference and the turbulent velocity fluctuations. In order to close the governing equations of the dispersed phase, the pseudo-viscosity coefficients are defined and determined by the time of duration of the inter-particle collision process. The model is general enough to apply to both polydisperse and monodisperse particulate systems and has been validated by comparisons with experimental data.  相似文献   

19.
The stability of the radial front of viscous fluid displacement from an annular Hele–Shaw cell with a sink of finite radius is analyzed. It is shown that in the absence of the surface tension and at a minimal manifestation of molecular diffusion the role of the stabilizing factor determining the displacement front structure can be played by small viscous forces in the cell plane. The viscous fingers formed in this case turn out to be wider than those in a rectangular cell.  相似文献   

20.
A new model coupling two basic models, the model based on interface tracking method and the two-fluid model, for simulating gas–liquid two-phase flow is presented. The new model can be used to simulate complex multiphase flow in which both large-length-scale interface and small-length-scale gas–liquid interface coexist. By the physical state and the length scale of interface, three phases are divided, including the liquid phase, the large-length-scale-interface phase (LSI phase) and the small-length-scale-interface phase (SSI phase). A unified solution framework shared by the two basic models is built, which makes it convenient to perform the solution process. Based on the unified solution framework, the modified MCBA–SIMPLE algorithm is employed to solve the Navier–Stokes equations for the proposed model. A special treatment called “volume fraction redistribution” is adopted for the special grids containing all three phases. Another treatment is proposed for the advection of large-length-scale interface when some portion of SSI phase coalesces into LSI phase. The movement of the large-length-scale interface is evaluated using VOF/PLIC method. The proposed model is equivalent to the two-fluid model in the zone where only the liquid phase and the SSI phase are present and to the model based on interface tracking method in the zone where only the liquid phase and the LSI phase are present. The characteristics of the proposed model are shown by four problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号