首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To prepare uniform polystyrene particles with ten microns of diameter, a parallel scaling-up strategy for the capillary-assembled stepwise microchannel was developed, which created uniform droplets with high-throughput and formed a large amount of emulsion templates for the polymerization of styrene and cross-linker. The microchannel droplet generator was robust for the flow rate deviation of the continuous phase in the jetting flow, and droplet generation frequency up to 2.8 × 104 Hz was achieved with only four parallel droplet generators, which were much more efficient than the parallelly scaled microfluidic devices working in dripping flow. 32–52 μm average diameter droplets with 4.5%–8.4% diameter variation coefficients were successfully prepared from the microchannel device fabricated by low-cost 3D-print method, and the droplets were subsequently turned to solid particles via a two-step polymerization in the platform. The polystyrene particles were further reduced to 16.9–23.5 μm with 5.0%–8.6% diameter variation coefficients due to the accompanying emulsion polymerization, and the working capacity of the platform reached hundred milligrams of particles per hour.  相似文献   

2.
The flow and distribution of Newtonian, polymeric and colloid suspension fluids at low Reynolds numbers in bifurcations has importance in a wide range of disciplines, including microvascular physiology and microfluidic devices. A bifurcation consisting of circular capillaries laser etched into a hard polymer with inlet diameter 2.50 ± 0.01 mm, bifurcating to a small diameter outlet of 0.76 ± 0.01 mm and a large diameter outlet of 1.25 ± 0.01 mm is examined. Four distinct fluids (water, 0.25%wt xanthan gum, 8 and 22%vol hard-sphere colloidal suspensions) are flowed at flow rates from 10 to 30 ml/h corresponding to Reynolds numbers based on the entry flow from 0.001 to 8. PGSE NMR techniques are applied to obtain dynamic images of the fluids inside the bifurcation with spatial resolution of 59 × 59 μm/pixel in plane over a 200-μm-thick slice. Velocity in all three spatial directions is examined to determine the impact of secondary flows and characterize the transport in the bifurcation. The velocity data provide direct measurement of the volumetric distribution of the flow between the two channels as a function of flow rate. Water and the 8% colloidal suspension show a constant distribution with increasing flow rate, the xanthan gum shows an increase in fluid going into the larger outlet with higher flow rate, and the 22% colloidal suspension shows a decrease in fluid entering the larger channel with higher flow rate. For the colloidal particle flow, the distribution of colloid particles down the capillary is determined by examining the spectrally resolved propagator for the oil inside the core–shell particles in a direction perpendicular to the axial flow. Using dynamic magnetic resonance microscopy, the potential for using magnetic resonance for “particle counting” in a microscale bifurcation is thus demonstrated.  相似文献   

3.
A new model of the flow of two miscible, mutually-insoluble fluids in a porous medium with the formation of an emulsion and adsorption of the fluid components on the skeleton is proposed. The model takes into account the effect of interphase mass transfer on the emulsion dynamics and the active porosity. A continuous general solution of the one-dimensional model and the problem of breakdown of a discontinuity is constructed. The flow regimes generated in displacement problems which depend on the shape of the adsorption isotherms and the densities of the fluid components are considered. The time dependence of the production rate is constructed for frontal displacement regimes and for displacement regimes with the formation of a zone of mixing (Riemann wave) of the initial reservoir and injected fluids. These functions coincide, at least qualitatively, with the experimental data [1] indicating an initial increase in production rate even against a background of falling reservoir pressure, transition through a maximum, and subsequent decline. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 77–88, January–February, 1997. The work was carried out with financial support from the Russian Foundation for Fundamental Research (project No. 96-01-00991).  相似文献   

4.
A Deep Bed Filtration model has been developed to quantify the effect of solids invasion from drilling fluids on the permeability of rock formations. The calculated particle-trapping profiles are compared directly with experimental profiles from scanning electron microscopy and synchrotron X-ray diffraction tomography mapping. The computed permeability reduction as a consequence of particle invasion is in broad agreement with experiment. Backflow was modelled by reversing the flow rate, starting off with a situation where all particles either remain trapped or are all released. It appears that the experimentally observed 30% release of particles upon backflow is reproducible within the limits of the two extreme cases. When erosion is included in the model, a peak in the backflow pressure time series can be observed. This peak may be correlated with the experimentally observed flow initiation pressure, which is the backflow pressure needed to initiate flow after initial inflow filtration. Finally, we conclude that internal reservoir damage, within the limits of our 1-D single phase DBF model, may contribute to the experimentally observed flow initiation pressure.  相似文献   

5.
乔小溪  单斌  陈平 《摩擦学学报》2020,40(6):726-734
煤气化黑水处理系统管道由于其流体介质高含固体颗粒和腐蚀性介质,且工作在高温、高压差环境中,极易受到冲蚀磨损和腐蚀的耦合作用而失效,影响其服役寿命. 采用计算流体力学(CFD)方法数值模拟研究了煤气化黑水处理系统固-液两相流管道的冲蚀磨损行为和机理,以及流体介质速度和固体颗粒粒径对管道冲蚀磨损的影响规律,并分析了盲通管和涡室结构对弯管冲蚀磨损行为的优化改善效果. 研究结果显示,煤气化黑水处理系统管线的冲蚀高危区主要分布在弯管外拱和变径管等结构突变区域;管道冲蚀磨损行为与其内部流体的运动和颗粒冲击特性有关;管道的冲蚀率均随着流体速度的增加而加剧,而粒径对弯管和变径管冲蚀率的影响并非单调关系,这与颗粒受力作用有关;弯管优化分析显示,涡室结构可以降低弯管的最大冲蚀率,减缓弯管的冲蚀磨损.   相似文献   

6.
悬浮RDX炸药和铝颗粒混合粉尘爆轰的数值模拟   总被引:2,自引:0,他引:2  
采用两相流方法对炸药颗粒直径为20.0 m时与铝颗粒混合物的爆轰波的发展与传播过程及爆轰波参数进行了数值计算。结果表明,在炸药粉尘中加入铝颗粒,可以大大提高爆轰波参数。当铝颗粒直径为3.4 m时,尽管铝颗粒的直径较炸药颗粒直径小,但由于炸药颗粒的点火温度低,二者的点火时间相差不多。如果铝颗粒的直径为7.0 m,由于铝颗粒的点火滞后于炸药颗粒的点火,混合颗粒粉尘中可能形成双波阵面的爆轰波。  相似文献   

7.
Deterministic lateral displacement devices have been proved to be an efficient way to perform continuous particle separation in microfluidic applications (Huang et al. Science 304:987–990, 2004). On the basis of their size, particles traveling through an array of obstacles follow different paths and can be separated in outflow. One limitation of such a technique is that each device works for a specific critical size to achieve particle separation, and a new device with different geometrical properties needs to be fabricated, as the dimensions of the particles to be separated change. In this work, we demonstrate the possibility to tune the critical particle size in a deterministic lateral displacement device by using non-Newtonian fluids as suspending liquid. The analysis is carried out by extending the theory developed for a Newtonian constitutive law (Inglis et al. Lab Chip 6:655–658, 2006) to account for fluid shear-thinning. 3-D finite element simulations are performed to compute the dynamics of a spherical particle flowing through the deterministic ratchet. The results show that fluid shear-thinning, by altering the flow field between the obstacles, contributes to decrease the critical particle diameter as compared to the Newtonian case. Numerical simulations demonstrate that tunability of the critical separation size can be achieved by using the flow rate as control parameter. A design formula, relating the separation diameter to the fluid rheology and the relevant geometrical parameters of the device, is derived. Such a formula, originally developed for a power-law model, is proved to work for non-Newtonian liquids with a general viscosity trend.  相似文献   

8.
An electrorheological (ER) response is defined as the dramatic change in rheological properties of a suspension of small particles due to the application of a large electric field transverse to the direction of flow. ER fluids are typically composed of nonconducting or semiconducting particles dispersed in a nonconducting continuous phase. A sufficiently large electric field will cause ER fluids to solidify, giving rising to a yield stress. Many applications in torque and stress transfer devices were proposed employing the reversible yielding behavior of ER fluids. Successful applications depend on a large yield stress of ER fluids and therefore accurate measurements of the yield stress of ER fluids are required. Reported experimental yield stresses of ER fluids have been dynamic yield stresses obtained by extrapolating the shear stress–shear rate data to zero-shear rate. It would be very helpful to the understanding of ER behaviors and the applications of ER fluids to be able to measure the static yield stress of ER fluids accurately. The slotted plate technique has been shown to be a successful method to determine the static yield stress of suspensions. The values obtained via the slotted plate method are static yield stress as the platform is designed for extremely low-speed motion. In this study, we modified the slotted plate device for the application of large electric fields and measured the static yield stress of TiO2 ER fluids under various electric fields. The measured static yield stress values are also compared with the static yield stress values from a commercial rheometer.  相似文献   

9.
When a liquid film falls from one tube to another below it, the flow can take the form of discrete droplets, individual jets or a continuous sheet. Experiments exploring the effects of thermophysical properties and geometrical parameters on the droplet and jet flow patterns are described. Measurements of droplet and jet departure-site spacing are reported for several fluids over a wide range of liquid flow rates, tube sizes and tube spacing. For the conditions of this study, departure-site spacing increased with decreasing Re for high-Ga fluids and was nearly independent of Re for low-Ga fluids. Departure-site spacing increased slightly with tube diameter for small tubes and was nearly independent of tube size for large tubes. Departure-site spacing was nearly independent of tube spacing for the entire range of experiments; however, a relation between jet shape, jet spacing and tube spacing was observed under some conditions. A qualitative study of liquid-jet shapes shows that this flow feature depends strongly on tube spacing, and comparisons to existing models suggest that further work in this area is needed.  相似文献   

10.
The horizontal flow of coarse particle suspensions in non-Newtonian carrier fluids was numerically simulated using an Eulerian–Eulerian CFD model. This study was concerned with nearly-neutrally buoyant particles of 5 and 10 mm diameter conveyed by fluids of Ellis rheology in laminar flow, in a 45 mm diameter pipe at concentrations up to 41% v/v. CFD predictions of solid phase velocity profiles and passage times were compared to experimental data obtained by a Positron Emission Particle Tracking (PEPT) technique and Hall effect sensors, and a very good agreement was obtained considering the complexity of the flows studied. CFD predictions of solid–liquid pressure drop were compared to a number of relevant correlations gleaned from the literature. Only one of them showed a good agreement over the whole range of conditions studied. Other correlations generally showed large deviations from CFD, and their limitations in predicting the influence of solids concentration and particle size have been demonstrated. Overall, it emerged that for the flows studied, CFD was capable of giving predictions of pressure drop which were probably better and more reliable than the correlations available in the literature.  相似文献   

11.
Polystyrene (PSt) microspheres with diameter of 375 nm to be used as the seeds for seeded emulsion polymerization were prepared via emulsion polymerization using potassium persulfate (KPS) as initiator in ethanol-water mixed solvents.Emulsifier-free seeded emulsion copolymerization of styrene (St) with acrylonitrile (AN) was carried out in the presence of poly(ethylene glycol) monomethoxymonomethacrylate (PEGm)macromonomer as reactive stabilizer and 2,2'-azobisisobutyronitrile (AIBN) as initiator to obtain submicron-sized PEGm graft poly(styrene-co-acrylonitrile) (PEGm-g-PSAN) composite particles with unique morphology.Scanning electron microscopy (SEM) indicated that St and AN together contributed to forming the unusual morphology.The concentration of St and AN,total monomer concentration,initiator type and the monomer adding method remarkably affected the morphology of the composite polymer particles.  相似文献   

12.
The phenomenon of adsorption of solid particles at fluid interfaces to stabilize emulsions or foams have been known for more than a century. Today, particle-stabilized emulsions, often referred to as Pickering emulsions, are receiving growing attention as they are encountered in oil recovery and have long been used in personal care products and food industry. Over the past 10 years the focus of the Pickering emulsion has also increasingly shifted to biomedical applications with thanks to novel syntheses of a wide range of biocompatible particle stabilizers. Here, a brief overview of the development of biocompatible particles is given for Pickering emulsion stabilization, including alginate, poly(lactic-co-glycolic acid) (PLGA), and protein-based particles. The materials prepared by templating from emulsion stabilized with biocompatible particles include colloidal capsules and hierarchically porous materials. It is hoped that the understanding gained from the recent intense activity in the field will enable more researchers to modify existing materials and design new formulations, which would be beneficial for exploring more biological applications.  相似文献   

13.
王嗣强  季顺迎 《力学学报》2018,50(5):1081-1092
基于连续函数包络的超二次曲面单元可有效地描述自然界和工业生产中的非球体颗粒形态, 并通过非线性迭代方法精确计算单元间的接触力. 对于具有复杂几何形态的超二次曲面单元, 线性接触模型不能准确地计算不同接触模式下的作用力. 考虑超二次曲面单元相互作用时不同颗粒形状及表面曲率的影响, 本文发展了相应的非线性黏弹性接触模型. 该模型将不同接触模式下的法向刚度和黏滞力统一表述为单元间局部接触点处等效曲率半径的函数; 切向接触作用则借鉴基于Mohr-Coulomb摩擦定律的球体单元非线性接触模型的计算方法. 为检验超二次曲面单元接触模型的可靠性, 对球形颗粒间的法向碰撞、椭球体颗粒间的斜冲击过程、圆柱体的静态堆积和椭球体的动态卸料过程进行离散元模拟, 并与有限元数值结果及试验结果进行对比验证. 计算表明, 考虑接触点处等效曲率半径的超二次曲面非线性接触模型可准确地计算单元间的接触碰撞作用, 并合理地反映非球形颗粒体系的运动规律. 在此基础上进一步分析了不同长宽比和表面尖锐度对卸料过程中颗粒流动特性的影响, 为非球形颗粒材料的流动特性分析提供了一种有效的离散元方法.   相似文献   

14.
为探讨口腔环境下流体的流动行为,采用数值方法与流变试验深入研究舌/上颚微间隙下流体流量的影响因素. 建立舌/上颚微间隙的简化模型及Reynolds方程,通过数值方法获取微间隙下流量变化;在DHR-2流变仪上研究非牛顿流体的黏度与剪切率的变化,探讨牛顿流体和非牛顿流体的流量影响. 结果表明:牛顿流体流量平方的倒数同载荷和黏度比值和时间均呈线性函数关系;所制备的非牛顿流体近似为幂律流体,其黏度随脂肪含量的增加而增大,而非牛顿流体流量率先高于后低于等效牛顿流体,其研究结果将为特定人群功能产品的研发提供技术支持.   相似文献   

15.
Standing surface acoustic wave (SSAW) based microfluidic devices have shown great promise toward fluid and particle manipulation applications in medicine, chemistry, and biotechnology. In this article, we present an analytical model for investigating continuous manipulation of particles (both synthetic and biological) within electroosmotic flow of non-Newtonian bio-fluids in a microfluidic channel under the influence of standing surface acoustic waves (SSAW). The particles are injected along the center of channel into the electroosmotically driven flow of power-law fluids, wherein their transport through the SSAW region is dictated by the hydrodynamic, electrophoretic, and acoustic forces. We first present a mathematical model to analyze the characteristics of electroosmotic flow of non-Newtonian power-law fluids in a hydrophobic slit microchannel. Next, we investigate the trajectories of particles in the flow field due to the combined effect of electroosmotic, electrophoretic, and acoustophoretic forcing mechanisms. The effect of key parameters such as particle size, their physical properties, input power, flow rate, and flow behavior index on the particle trajectories is examined while including the effect of the channel walls. The presented model delineates the methodologies of improving SSAW-based particle separation technology by considering the fluid rheology as well as the surface properties of the channel walls. Therefore, we believe that this model can serve as an efficient tool for device design and quick optimizations to explore novel applications concerning the integration of electroosmotic flows with acoustofluidic technologies.  相似文献   

16.
Polystyrene (PSt) microspheres with diameter of 375 nm to be used as the seeds for seeded emulsion polymerization were prepared via emulsion polymerization using potassium persulfate (KPS) as initiator in ethanol-water mixed solvents. Emulsifier-free seeded emulsion copolymerization of styrene (St) with acrylonitrile (AN) was carried out in the presence of poly(ethylene glycol) monomethoxymonomethacrylate (PEGm) macromonomer as reactive stabilizer and 2,2'-azobisisobutyronitrile (AIBN) as initiator to obtain submicron-sized PEGm graft poly(styrene-coacrylonitrile) (PEGm-g-PSAN) composite particles with unique morphology. Scanning electron microscopy (SEM) indicated that St and AN together contributed to forming the unusual morphology. The concentration of St and AN, total monomer concentration, initiator type and the monomer adding method remarkably affected the morphology of the composite polymer particles.  相似文献   

17.
The steady motion of spheres representing particles inside tubes filled with different fluids has been investigated using both a finite-element and a finite-volume method. The rheology of the fluids has been modelled by the power-law able to describe the shear-thinning (pseudoplastic) behaviour of a series of polymer solutions. New results have been obtained for a series of tube/sphere diameter ratios in order to investigate the wall effects on the drag exerted by the fluid on the sphere. The results agree well with previous simulations for an unbounded medium (infinite diameter ratio). Experimental investigations have also been carried out and simulated, and the results compare favourably with the experiments. The present simulations revealed the convergence of the drag coefficient to a constant value independent of tube-to-sphere diameter ratio when the power-law index approaches zero.  相似文献   

18.
The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when the nanoparticles reach near each other, the strong interatomic force will make them attach together. This aggrega- tion continues until all nanoparticles make a continuous cluster. The effect of altering the external force magnitude causes changes in the agglomeration rate and system enthalpy. The density and velocity profiles are shown for two systems, i.e., argon (Ar)-copper (Cu) nanofluid and simple Ar fluid between two Cu walls. The results show that using nanopar- ticles changes the base fluid particles ordering along the nanochannel and increases the velocity. Moreover, using nanoparticles in simple fluids can increase the slip length and push the near-wall fluid particles into the main flow in the middle of the nanochannel.  相似文献   

19.
The flow behavior and mass transfer in a three-phase external-loop airlift reactor can be improved by adding large particles. The mass transfer and liquid dispersion behavior for a three-phase external-loop reactor with large particles are studied in terms of the effect of the diameter and loading of the large particles on the liquid dispersion coefficient and mass transfer coefficient, The results showed that increasing the diameter or loading of the large particles tend to decrease dispersion and intensify mass transfer, and that an increase in the diameter of the large particles remarkably decreases the particle loop rate, while the effect of fine particles is much less notable.  相似文献   

20.
The flow behavior and mass transfer in a three-phase external-loop airlift reactor can be improved by adding large particles. The mass transfer and liquid dispersion behavior for a three-phase external-loop reactor with large particles are studied in terms of the effect of the diameter and loading of the large particles on the liquid dispersion coefficient and mass transfer coefficient. The results showed that increasing the diameter or loading of the large particles tend to decrease dispersion and intensify mass transfer, and that an increase in the diameter of the large particles remarkably decreases the particle loop rate, while the effect of fine particles is much less notable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号