首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the Internet of Things (IoT) becomes increasingly popular, the amount of information transmitted through the IoT network has increased significantly. Therefore, the privacy and security problem of the transmitted information has become a major area of focus. Motivated by this, this paper considers the covert communication based on non-orthogonal multiple access (NOMA), which consists of a transmitter, a legal user, a warden with power detection function and a multi-antenna jammer. To realize the covert communication between the transmitter and the legitimate user, the detection error probability of the warden is firstly derived, and then the optimal detection threshold and the minimum detection error probability (MDEP) are obtained. In addition, with the aim of designing this system, the average MDEP of the warden is calculated, and the closed form solution for the outage probability (OP) of the communication link is obtained. Then, a scheme is proposed to optimize the covertness of this system under the covertness constraint and interruption constraint, through which the maximum covert throughput of the system can be obtained. The simulated numerical results validate the theoretical analysis, and testify that: (i) the detection performance of the warden can be reduced by increasing the maximum jamming power of the jammer or reducing the transmitting power of the transmitter; (ii) by optimizing the power allocation factor, the maximum covert throughput of the system can be obtained under the premise of satisfying the covertness constraint and interruption condition; (iii) the proposed optimization scheme can enhance the covertness performance of this system.  相似文献   

2.
In this paper, we propose a spectrum-sharing protocol for a cooperative cognitive radio network based on non-orthogonal multiple access technology, where the base station (BS) transmits the superimposed signal to the primary user and secondary user with/without the assistance of a relay station (RS) by adopting the decode-and-forward technique. RS performs discrete-time energy harvesting for opportunistically cooperative transmission. If the RS harvests sufficient energy, the system performs cooperative transmission; otherwise, the system performs direct transmission. Moreover, the outage probabilities and outage capacities of both primary and secondary systems are analyzed, and the corresponding closed-form expressions are derived. In addition, one optimization problem is formulated, where our objective is to maximize the energy efficiency of the secondary system while ensuring that of the primary system exceeds or equals a threshold value. A joint optimization algorithm of power allocation at BS and RS is considered to solve the optimization problem and to realize a mutual improvement in the performance of energy efficiency for both the primary and secondary systems. The simulation results demonstrate the validity of the analysis results and prove that the proposed transmission scheme has a higher energy efficiency than the direct transmission scheme and the transmission scheme with simultaneous wireless information and power transfer technology.  相似文献   

3.
This paper considers a space–air–ground integrated network (SAGIN) to provide network access services for aerial and terrestrial terminals. The non-orthogonal multiple access (NOMA) is used for improving spectral efficiency in the uplink transmission between terminals and access points (APs) in SAGIN. A sum rate maximization optimization problem is formulated by optimizing terminal-AP association and power allocation, while simultaneously satisfying the constraints of transmit power, network coverage characteristics, and quality-of-service (QoS) requirements of both aerial and terrestrial terminals. To deal with the formulated mixed integer nonlinear programming (MINLP) optimization problem, we first decouple it into separated terminal-AP association and power allocation problems. Then, we adopt the Q-learning algorithm to solve the terminal-AP association subproblem. Based on the obtained terminal-AP association solution, an iterative power allocation algorithm is developed by exploiting the Lagrange dual method. Moreover, the computational complexity of the proposed algorithm is further analyzed. Simulation results demonstrate that, compared with other schemes, our proposed algorithm can achieves a better performance in terms of the achievable sum rate, average achievable rate, and outage probability.  相似文献   

4.
As one of the most promising non-orthogonal multiple access (NOMA) technologies in 5G communication, pattern division multiple access (PDMA) has theoretically higher spectrum utilization and a larger communication capacity than conventional orthogonal multiple access (OMA) technologies. In this letter, PDMA is applied to hybrid satellite–terrestrial networks with decode-and-forward (DF) relaying in the downlink, and an in-depth study on the performance of outage probability (OP), ergodic capacity and system throughput is performed. For a more comprehensive analysis, hybrid satellite–terrestrial relay networks (HSTRNs) with conventional OMA technology are used in the comparative analysis. Analysis and simulation results show that PDMA-based hybrid satellite–terrestrial relay networks outperform the other system in terms of OP and ergodic capacity.  相似文献   

5.
Intelligent reflecting surfaces (IRSs) are anticipated to provide reconfigurable propagation environment for next generation communication systems. In this paper, we investigate a downlink IRS-aided multi-carrier (MC) non-orthogonal multiple access (NOMA) system, where the IRS is deployed to especially assist the blocked users to establish communication with the base station (BS). To maximize the system sum rate under network quality-of-service (QoS), rate fairness and successive interference cancellation (SIC) constraints, we formulate a problem for joint optimization of IRS elements, sub-channel assignment and power allocation. The formulated problem is mixed non-convex. Therefore, a novel three stage algorithm is proposed for the optimization of IRS elements, sub-channel assignment and power allocation. First, the IRS elements are optimized using the bisection method based iterative algorithm. Then, the sub-channel assignment problem is solved using one-to-one stable matching algorithm. Finally, the power allocation problem is solved under the given sub-channel and optimal number of IRS elements using Lagrangian dual-decomposition method based on Lagrangian multipliers. Moreover, in an effort to demonstrate the low-complexity of the proposed resource allocation scheme, we provide the complexity analysis of the proposed algorithms. The simulated results illustrate the various factors that impact the optimal number of IRS elements and the superiority of the proposed resource allocation approach in terms of network sum rate and user fairness. Furthermore, we analyze the proposed approach against a new performance metric called computational efficiency (CE).  相似文献   

6.
With the rapid development of the Internet of Things (IoT) and the increasing number of wireless nodes, the problems of scare spectrum and energy supply of nodes have become main issues. To achieve green IoT techniques and resolve the challenge of wireless power supply, wireless-powered backscatter communication as a promising transmission paradigm has been concerned by many scholars. In wireless-powered backscatter communication networks, the passive backscatter nodes can harvest the ambient radio frequency signals for the devices’ wireless charging and also reflect some information signals to the information receiver in a low-power-consumption way. To balance the relationship between the amount of energy harvesting and the amount of information rate, resource allocation is a key technique in wireless-powered backscatter communication networks. However, most of the current resource allocation algorithms assume available perfect channel state information and limited spectrum resource, it is impractical for actual backscatter systems due to the impact of channel delays, the nonlinearity of hardware circuits and quantization errors that may increase the possibility of outage probability. To this end, we investigate a robust resource allocation problem to improve system robustness and spectrum efficiency in a cognitive wireless-powered backscatter communication network, where secondary transmitters can work at the backscattering transmission mode and the harvest-then-transmit mode by a time division multiple access manner. The total throughput of the secondary users is maximized by jointly optimizing the transmission time, the transmit power, and the reflection coefficients of secondary transmitters under the constraints on the throughput outage probability of the users. To tackle the non-convex problem, we design a robust resource allocation algorithm to obtain the optimal solution by using the proper variable substitution method and Lagrange dual theory. Simulation results verify the effectiveness of the proposed algorithm in terms of lower outage probabilities.  相似文献   

7.
In this paper, we study the cooperative communication of a cognitive underlay network by utilizing the diversity of multiple spectrum bands. In particular, we assume that the transmission power of the secondary user (SU) is subject to different joint constraints, such as peak interference power of the multiple primary users (PUs), peak transmission power of the SU, outage tolerate interference, and outage probability threshold. Accordingly, two power allocation schemes are considered on the basis of the minimum interference channel from the SU to the PU and the channel state information of the primary user link. Furthermore, the SU can select one of the three transmission modes following the channel state conditions, namely as cellular, device-to-device, or switching mode, to transmit the signal to the secondary user receiver. Given this setting, two power allocation schemes over a spectrum band selection strategy are derived. In addition, closed-form expressions for the outage probability of three modes are also obtained to evaluate the performance of the secondary network. Most importantly, a closed-form expression for the peak interference power level of the PU, which is considered as one of the most important parameters to control the SU’s transmission power, is derived by investigating the relation of two considered power allocation schemes in the practise. Finally, numerical examples show that the outage performance of secondary network in the switching mode outperforms the one of the cellular and device-to-device (D2D) mode for all considered power allocation schemes.  相似文献   

8.
Deployment of heterogeneous wireless networks is spreading throughout the world as users want to be connected anytime, anywhere, and anyhow. Meanwhile, users are increasingly interested in multimedia applications such as audio, video streaming and Voice over IP (VoIP), which require strict Quality of Service (QoS) support. Provisioning of Always Best Connected (ABC) network with such constraints is a challenging task. Considering the availability of various access technologies, it is difficult for a network operator to find reliable criteria to select the best network that ensures user satisfaction while reducing multiple network selection. Designing an efficient Network selection algorithm, in this type of environment, is an important research problem. In this paper, we propose a novel network selection algorithm utilizing signal strength, available bit rate, signal to noise ratio, achievable throughput, bit error rate and outage probability metrics as criteria for network selection. The selection metrics are combined with PSO for relative dynamic weight optimization. The proposed algorithm is implemented in a typical heterogeneous environment of EDGE (2.5G) and UMTS (3G). Switching rate of the user between available networks has been used as the performance metric. Moreover, a utility function is used to maintain desired QoS during transition between networks, which is measured in terms of the throughput. It is shown here that PSO based approach yields optimal network selection in heterogeneous wireless environment.  相似文献   

9.
With the energy consumption of wireless networks increasing, visible light communication (VLC) has been regarded as a promising technology to realize energy conservation. Due to the massive terminals access and increased traffic demand, the implementation of non-orthogonal multiple access (NOMA) technology in VLC networks has become an inevitable trend. In this paper, we aim to maximize the energy efficiency in VLC-NOMA networks. Assuming perfect knowledge of the channel state information of user equipment, the energy efficiency maximization problem is formulated as a mixed integer nonlinear programming problem. To solve this problem, the joint user grouping and power allocation (JUGPA) is proposed including user grouping and power allocation. In user grouping phase, we utilize the average of channel gain among all user equipment and propose a dynamic user grouping algorithm with low complexity. The proposed scheme exploits the channel gain differences among users and divides them into multiple groups. In power allocation phase, we proposed a power allocation algorithm for maximizing the energy efficiency for a given NOMA group. Thanks to the objective function is fraction form and non-convex, we firstly transform it to difference form and convex function. Then, we derive the closed-form optimal power allocation expression that maximizes the energy efficiency by Dinkelbach method and Lagrange dual decomposition method. Simulation results show that the JUGPA can effectively improve energy efficiency of the VLC-NOMA networks.  相似文献   

10.
In this paper, a new non-orthogonal multiple access (NOMA) scheme is proposed for the reconfigurable intelligent surface (RIS) assisted high-capacity visible light communication (VLC) system, which is named hybrid domain multiple access (HDMA). HDMA enjoys the benefit of hybrid-domain signals, including the power domain, code domain, and frequency domain, where the message passing algorithm (MPA) and successive interference cancellation (SIC) detectors are jointly used at the HDMA receiver. Furthermore, to achieve a higher communication capacity for the VLC system, we proposed an optimization model by jointly optimizing the power allocation ratio and RIS reflection units. The simulation results verified the proposed scheme. By comparing the system capacity of different RIS allocation schemes and multiple access methods, the VLC system based on HDMA proposed in this paper can significantly improve its communication capacity.  相似文献   

11.
Femtocell technology has emerged as an efficient cost-effective solution not only to solve the indoor coverage problem but also to cope with the growing demand requirements. This paper investigates two major design concerns in two tier networks: resource allocation and femtocell access. Base station selection together with dual bandwidth and power allocation among the two tiers is investigated under shared spectrum usage. To achieve fair and efficient resource optimization, our model assumes that the hybrid access mode is applied in the femtocells. The hybrid access mode is beneficial for system performance as (1) it lessens interference caused by nearby public users, (2) it allows public users to connect to near femtocells and get better Quality of Service (QoS) and (3) it increases system capacity as it allows the macrocell to serve more users. However, femtocells’ owners can behave selfishly by denying public access to avoid any performance reduction in subscribers’ transmissions. Such a problem needs a motivation scheme to assure the cooperation of femtocells’ owners. In this paper, we propose a game-theoretical hybrid access motivational model. The proposed model encourages femtocells’ owners to share resources with public users, thus, more efficient resource allocation can be obtained. We optimize the resource allocation by means of the Genetic Algorithm (GA). The objective of the formulated optimization problem is the maximization of network throughput that is calculated by means of Shannon’s Capacity Law. Simulations are conducted where a modified version of the Weighted Water Filling (WWF) algorithm is used as a benchmark. Our proposed model, compared to WWF, achieves more efficient resource allocation in terms of system throughput and resources utilization.  相似文献   

12.
In this paper, we investigate the physical-layer security of a secure communication in single-input multiple-output (SIMO) cognitive radio networks (CRNs) in the presence of two eavesdroppers. In particular, both primary user (PU) and secondary user (SU) share the same spectrum, but they face with different eavesdroppers who are equipped with multiple antennas. In order to protect the PU communication from the interference of the SU and the risks of eavesdropping, the SU must have a reasonable adaptive transmission power which is set on the basis of channel state information, interference and security constraints of the PU. Accordingly, an upper bound and lower bound for the SU transmission power are derived. Furthermore, a power allocation policy, which is calculated on the convex combination of the upper and lower bound of the SU transmission power, is proposed. On this basis, we investigate the impact of the PU transmission power and channel mean gains on the security and system performance of the SU. Closed-form expressions for the outage probability, probability of non-zero secrecy capacity, and secrecy outage probability are obtained. Interestingly, our results show that the strong channel mean gain of the PU transmitter to the PU’s eavesdropper in the primary network can enhance the SU performance.  相似文献   

13.
In a multicarrier NOMA system, the subchannel allocation (SA) and power allocation (PA) are intricately linked and essential for improving system throughput. Also, for the successful execution of successive interference cancellations (SIC) at the receiver, a minimum power gap is required among users. As a result, this research comes up with optimization of the SA and PA to maximize the sum rate of the NOMA system while sticking to the minimum power gap constraint in addition to minimum user rate, maximum number of users in a subchannel and power budget constraints for downlink transmission in multicarrier NOMA networks. To ensure that the formulated problem can be solved in polynomial time, we propose solving it in two stages; SA followed by PA. To obtain SA, we investigate four algorithms: Greedy, WSA, WCA, and WCF. For PA, we propose a low-complexity algorithm. We compare the performance of the proposed method with benchmark method that does not consider the minimum power gap constraint. We conclude that employing WCF algorithm with the PA algorithm gives the best sum rate performance.  相似文献   

14.
基于鱼群算法的OFDMA自适应资源分配   总被引:3,自引:0,他引:3       下载免费PDF全文
汪照  李有明  陈斌  邹婷 《物理学报》2013,62(12):128802-128802
针对多用户正交频分多址系统自适应资源分配问题, 提出了一种新的子载波和基于鱼群算法的功率自适应分配算法. 该算法首先对总功率在子载波间均等分布的条件下进行子载波分配,然后引入鱼群算法并根据给出的兼顾用户公平性与系统容量的适应度函数,通过全局搜索实现用户间的功率分配. 仿真结果表明,新算法在保证用户公平性的同时, 还实现了系统总的传输速率最大化. 关键词: 多用户正交频分多址 资源分配 鱼群算法 速率最大化  相似文献   

15.
混沌免疫算法求解认知无线电网络资源分配问题   总被引:1,自引:0,他引:1       下载免费PDF全文
柴争义  郑丽萍  朱思峰 《物理学报》2012,61(11):118801-118801
为了优化认知无线电网络中多用户正交频分复用子载波的资源分配, 将其转换为一个约束优化问题, 进而提出了一种基于混沌免疫优化的求解方法.给出了算法的实现过程和关键技术, 设计了适合算法求解的编码、 克隆、 重组、 变异算子.实验结果表明, 在满足认知用户速率、 所需误码率及干扰约束的条件下, 本文所用算法减小了整个系统所需的总发射功率, 同时收敛速度较快, 能够得到较优的子载波分配方案, 进而提高频谱利用效率.  相似文献   

16.
This paper investigates the performance of hybrid radio frequency/millimeter wave (RF/mmWave) satellite–terrestrial relay network with non-orthogonal multiple access (NOMA) scheme. In particular, the satellite network operates at the Ka-band while the mmWave band is adopted at decode-and-forward (DF) relay–destination link. The blockage effect in mmWave communication is considered to deduce the ordered probability density function (PDF) of the user equipment (UE) distance. However, the randomness of the UEs’ location and the random beamforming design cause the difficulty of the performance analysis. Herein, we provide a closed-form approximation for the outage probability. Moreover, the system diversity order is derived from the asymptotic expressions of the outage probability at high signal-to-noise ratio (SNR) slopes. Besides, approximate ergodic capacity performances of the multi-UEs are evaluated with numerical integration. Simulations are applied to demonstrate the accuracy of the theoretical analysis and show that the performance of the ordered selection NOMA scheme outperforms the orthogonal multiple access scheme and random selection scheme.  相似文献   

17.
In this paper, we study the joint user assignment and power allocation for the defined utility function (central cell throughput) maximization in massive Multiple Input-Multiple Output (MIMO) cellular system coexistence with Wireless Fidelity (WiFi) network. Firstly, the power allocation of problem is formulated as a convex optimization. Unfortunately, the formulated problem has not a closed-form solution. For solving the mentioned problem, it is converted to three sub-problem based on the number of lemmas that are expressed. Due to two of these problems remain difficult to solve, this two sub-problem are relaxed. The Ellipsoid algorithm is an iterative algorithm that used for solving of the relaxed problems. In the following, joint user assignment and power allocation will be addressed, in which two approaches are proposed for solving. In the first approach, we propose an iterative algorithm that user assignment problem and power allocation problem are solved in each iteration. In the second approach, at first, users are assigned to licensed and unlicensed bands, then for the obtained arrangement, the power allocation problem is solved. The simulation results showed that the proposed algorithms are significantly close to the benchmark methods.  相似文献   

18.
Next generation wireless networks consist of heterogeneous access technologies. In order to provide global ubiquitous communication, it is required to provide a framework in which user can move across multiple access interfaces while maintaining its ongoing communication at perceived quality of service. Given the scenario of multiple access networks, it is further required to select the optimum network out of multiple candidate networks to meet the requirements of the ongoing session. The selection of optimum network in such heterogeneous environment is generally based on network conditions and user preference. In this paper, we propose an algorithm for network selection based on averaged received signal strength, outage probability and distance. The proposed algorithm comprises of two stages. Assuming that network conditions are dominant in network selection, in first stage, overlapping region is identified through distance estimation. Network selection algorithm based on averaged received signal strength plus outage is invoked in second stage to select the optimum network. Numerical results are obtained through a simulation model of two disparate networks – GSM and UMTS. It has been shown that the proposed algorithm offers 68% improved performance in terms of network selection rate.  相似文献   

19.
This paper focuses on the profit maximization problem in a reconfigurable intelligent surfaces (RIS) aided computing network, where multiple heterogeneous users offload their computational tasks to one computational access point (CAP) for seeking computing acceleration at the cost of profit. In particular, the CAP can also pre-store a part of the computing task to speed up computing, and the system has limited communication and computing resources, where heterogeneous users have different offloading requirements and the CAP can dynamically allocate the system resources to meet the requirements of users to earn profits. To maximize the system profit, we devise the system by proposing a resource allocation scheme which employs a genetic algorithm (GA), based on statistical channel state information (CSI) of wireless links. The proposed algorithm maximizes the long-term profit of the system by optimizing resource allocation among users. Finally, simulation results are provided to verify the proposed scheme. The results show that our proposed resource allocation scheme outperforms the conventional ones.  相似文献   

20.
In this paper, we investigate the unmanned aerial vehicle (UAV) relay-assisted secure short packet communication. The UAV acts as a decode-and-forward relay to transmit control signals from the source to the actuators in the presence of a ground eavesdropper (EV) whose imperfect channel state information is available at the UAV. Specially, non-orthogonal multiple access is adopted in our work to achieve more connections and improve the fairness of communication and the short packets are employed for data transmission to reduce the latency. Explicitly, we maximize the minimum average secrecy throughput among all actuators by jointly optimizing the UAV trajectory, transmit power and blocklength allocation, which generates a challenging optimization problem. Therefore, we propose an iterative algorithm based on block coordinate descent method and successive convex approximation technique to handle the non-convex problem. Numerical results show that the proposed scheme has better performance compared to the benchmark schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号