共查询到12条相似文献,搜索用时 0 毫秒
1.
Recently, with the rapid growth of demands for wireless communications, dynamic spectrum allocation is one of the key technologies in cognitive radio networks to resolve the realistic problem of low utilization efficiency of spectrum. It mainly focuses on how the spectrum owner dynamically allocates idle spectrum to secondary users who have no licensed spectrum for communications. In this paper, a dynamic spectrum allocation model based on auction theory in a two-tier heterogeneous network is proposed, in which the primary users (PUs) are the sellers, the central processor (CP) auctioneer is the coordinator, and femtocell base station (FBS) as the buyer bids for the idle spectrum and act as a wireless access point that provides communication services for secondary users (SUs). Its basic process is as follows: the auctioneer gradually raises the spectrum price from the reserved price; each bidder decides whether participates in the purchase or not. It is characterized by distributed execution and low complexity which can reduce unnecessary information exchange between primary users or secondary users. Meanwhile it can enhance the utilization of spectrum and improve the efficiency of the auction by generate the incentive mechanism. 相似文献
2.
In this paper, we study the cooperative communication of a cognitive underlay network by utilizing the diversity of multiple spectrum bands. In particular, we assume that the transmission power of the secondary user (SU) is subject to different joint constraints, such as peak interference power of the multiple primary users (PUs), peak transmission power of the SU, outage tolerate interference, and outage probability threshold. Accordingly, two power allocation schemes are considered on the basis of the minimum interference channel from the SU to the PU and the channel state information of the primary user link. Furthermore, the SU can select one of the three transmission modes following the channel state conditions, namely as cellular, device-to-device, or switching mode, to transmit the signal to the secondary user receiver. Given this setting, two power allocation schemes over a spectrum band selection strategy are derived. In addition, closed-form expressions for the outage probability of three modes are also obtained to evaluate the performance of the secondary network. Most importantly, a closed-form expression for the peak interference power level of the PU, which is considered as one of the most important parameters to control the SU’s transmission power, is derived by investigating the relation of two considered power allocation schemes in the practise. Finally, numerical examples show that the outage performance of secondary network in the switching mode outperforms the one of the cellular and device-to-device (D2D) mode for all considered power allocation schemes. 相似文献
3.
In this paper, we investigate four-wave mixing (FWM) effects in the ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON) system and propose an efficient channel allocation scheme to mitigate the FWM impact. This scheme is formed by grouping signal channels into several blocks with different channel spacing. Through numerical analysis and simulations, our proposed scheme is verified to be able to reduce the FWM effects and have higher bandwidth efficiency than the traditional unequal channel allocation scheme. The simulation results also demonstrate that our proposed scheme can achieve nearly 4 dB increases in optical power budget of the UDWDM-PON systems at the BER of 1e−3, in comparison with the equal spaced channel scheme. 相似文献
4.
This paper proposes a distributed implementation of spatial modulation (SM) using cognitive radios. In distributed spatial modulation (DSM), multiple relays form a virtual antenna array and assist a source to transmit its information to a destination. The source broadcasts its signal, which is independently demodulated by all the relays. Each of the relays then divides the received data in two parts: the first part is used to decide which one of the relays will be active, and the other part decides what data it will transmit to the destination. An analytical expression for symbol error probability is derived for DSM in independent and identically distributed (i.i.d.) Rayleigh fading channels. The analytical results are later compared with Monte Carlo simulations. Further, an instantaneous symbol error rate (SER) based selection combining is proposed to incorporate the direct link between the source and destination with existing DSM. Next, DSM implementation is extended to a cognitive network scenario where the source, relays, and destination are all cognitive radios. A dynamic frequency allocation scheme is proposed to improve the performance of DSM in this scenario. The frequency allocation is modeled through a bipartite graph with end-to-end SER as a weight function. The optimal frequency allocation problem is formulated as minimum weight perfect matching problem and is solved using the Hungarian method. Finally, numerical results are provided to illustrate the efficacy of the proposed scheme. 相似文献
5.
Cognitive Radio (CR) aims to provide efficient spectrum utilization in spectrum scarce wireless environments. One of the key CR functionalities is the spectrum sensing, which allows CRs to monitor the electromagnetic spectrum and detect unused bands of spectrum. Wideband spectrum sensing needs to be employed for better spectrum opportunity detection and interference avoidance both in the case of commercial and military applications. Accurate sensing needs to be employed for blocker detection in commercial systems such as LTE for the design of transmit/receive path. In military radios, the challenge lies in the robust detection of the location of the center frequencies and bandwidths of individual radio channels in the wideband input signal. In this paper, an energy detector based on tree-structured discrete Fourier transform based filter bank (TDFTFB) is proposed for detecting the edges of the channels in the spectrum. The proposed method is compared with the conventional wavelets based method for complexity and performance. The design example and simulations show that the gate count resource utilization of the proposed detection scheme is 22.9% lesser than the wavelets method at the cost of a slight degradation (0.5%) in detection accuracy. Over-the-air tests performed using Universal Software Radio Peripheral 2 (USRP2) and MATLAB/SIMULINK showed that the present method is not input specific whereas the conventional wavelet based approach depends on the spectral location of the input. 相似文献
6.
The massive growth in mobile users and wireless technologies has resulted in increased data traffic and created demand for additional radio spectrum. This growing demand for radio spectrum has resulted in spectrum congestion and mandated the need for coexistence between radar and interfering communication emitters. To address the aforementioned issues, it is critical to review existing policies and evaluate new technologies that can utilize spectrum in an efficient and intelligent manner. Cognitive radio and cognitive radar are two promising technologies that exploit spectrum using dynamic spectrum access techniques. Additionally, introducing the bio-inspired concept ‘metacognition’ in a cognitive process has shown to increase the effectiveness and robustness of the cognitive radio and cognitive radar system. Metacognition is a high-order thinking agent that monitors and regulates the cognition process through a feedback and control process called the perception–action cycle. Extensive research has been done in the field of spectrum sensing in cognitive radio and spectral coexistence between radar and communication systems. This paper provides a detailed classification of spectrum sensing schemes and explains how dynamic spectrum access strategies share the spectrum between radar and communication systems. In addition to this, the fundamentals of cognitive radio, its architecture, spectrum management framework, and metacognition concept in radar are discussed. Furthermore, this paper presents various research issues, challenges, and future research directions associated with spectrum sensing in cognitive radar and dynamic spectrum access strategies in cognitive radar. 相似文献
7.
Artificial bee colony (ABC) algorithm builds on simulating the intelligent behavior of honey bees. It shows good performance in many applications. As standard ABC algorithm does not employ any crossover operator, the dispersal of good genetic information amongst the solutions is undermined. In this paper, the impact of crossover operators on the performance of ABC is studied. Eight crossover operators, representing all kinds of crossover operators, are used in this study. A trial and error method is used to detect the most proper crossover operator and crossover rate for incorporation into the ABC algorithm on mathematical functions as an initial attempt. The overall best configuration of ABC with crossover which has been identified is then applied to solve power allocation problem in cognitive multiple input and multiple output orthogonal frequency division multiplexing (MIMO-OFDM) cognitive system. Promising performances are obtained when compared with those from genetic algorithm, particle swarm optimization and differential evolution algorithm. 相似文献
8.
The recent strides in vehicular networks have emerged as a convergence of multi radio access networks having different user preferences, multiple application requirements and multiple device types. In future Cognitive Radio (CR) vehicular networks deployment, multiple radio access networks may coexist in the overlapping areas having different characteristics in terms of multiple attributes. Hence, it becomes a challenge for CR vehicular node to select the optimal network for the spectrum handoff decision. A game theoretic auction theory approach is interdisciplinary effective approach to select the optimal network for spectrum handoff. The competition between different CR vehicular node and access networks can be formulated as multi-bidder bidding to provide its services to CR vehicular node. The game theory is the branch of applied mathematics which make intelligent decision to select the optimal alternative from predetermined alternatives. Hence, this paper investigates a spectrum handoff scheme for optimal network selection using game theoretic auction theory approach in CR vehicular networks. The paper has also proposed a new cost function based multiple attribute decision making method which outperforms other existing methods. Numerical results revel that the proposed scheme is effective for spectrum handoff for optimal network selection among multiple available networks. 相似文献
9.
10.
In this paper, we introduce a grouping approach for power allocation in the multi-user OFDM-DCSK (MU-OFDM-DCSK) system under the frequency selective fading channels. The suggested procedure is convenient also for the other comb-type non-coherent schemes with similar structure. Furthermore, we derive analytical bit error rate (BER) expression for the grouped scheme and offer an optimal power distribution policy for both the single- and multi-user scenarios. This power assignment strategy is formulated by a min–max problem with the target of the worst group BER minimization incorporating total power and interference constraints. Simulation results confirm the advantages of the proposed power allocation scheme. 相似文献
11.
Faced with limited network resources, diverse service requirements and complex network structures, how to efficiently allocate resources and improve network performances is an important issue that needs to be addressed in 5G or future 6G networks. In this paper, we propose a multi-timescale collaboration resource allocation algorithm for distributed fog radio access networks (F-RANs) based on self-learning. This algorithm uses a distributed computing architecture for parallel optimization and each optimization model includes large time-scale resource allocation and small time-scale resource scheduling. First, we establish a large time-scale resource allocation model based on long-term average information such as historical bandwidth requirements for each network slice in F-RAN by long short-term memory network (LSTM) to obtain its next period required bandwidth. Then, based on the allocated bandwidth, we establish a resource scheduling model based on short-term instantaneous information such as channel gain by reinforcement learning (RL) which can interact with the environment to realize adaptive resource scheduling. And the cumulative effects of small time-scale resource scheduling will trigger another round large time-scale resource reallocation. Thus, they constitute a self-learning resource allocation closed loop optimization. Simulation results show that compared with other algorithms, the proposed algorithm can significantly improve resource utilization. 相似文献
12.
An opportunistic routing problem in a cognitive radio ad hoc network is investigated with an aim to minimize the interference to primary users (PUs) and under the constraint of a minimum end-to-end data rate for secondary users (SUs). Both amplify-and-forward (AF) and decode-and-forward (DF) relaying techniques are considered for message forwarding by SU nodes in the network. Unlike popular transmit power control based solutions for interference management in cognitive radio networks, we adopt a cross layer approach. The optimization problem is formulated as a joint power control, channel assignment and route selection problem. Next, closed form expression for transmission power is derived and corresponding channel selection scheme and routing metric are designed based on this solution. The proposed route selection schemes are shown to depend not only on gains of the interference channels between SUs and PUs but also on the values of the spectrum sensing parameters at the SU nodes in the network. Two distributed routing schemes are proposed based on our analysis; (i) optimal_DF and (ii) suboptimal_AF. The routing schemes could be implemented using existing table driven as well as on demand routing protocols. Extensive simulation results are provided to evaluate performance of our proposed schemes in random multihop networks. Results show significant reduction in PUs’ average interference experience and impressive performance as opportunistic routing schemes can be achieved by our schemes compared to traditional shortest path based routing schemes. Performance improvement is also reported over prominent recent schemes. 相似文献