首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soft crystals are a class of smart materials that can switch their photophysical or mechanical properties in response to gentle external stimuli. A representative stimuli-responsive behavior of soft crystals is mechanochromic luminescence (MCL), i.e., a reversible color change of solid-state photoluminescence induced by external mechanical stimuli. Together with the rapid growth in the area of solid-state photoluminescence including fluorescence, room-temperature phosphorescence (RTP), thermally activated delayed fluorescence (TADF), white-light emission (WLE), and circularly polarized luminescence (CPL), a number of soft crystals that exhibit MCL behaviors have been reported during the past decade. In the typical MCL of soft crystals, the emission color switches in the bathochromic direction upon amorphization by grinding and recovers to the original color upon recrystallization by heating or exposure to organic solvents. Relatively few are known to exhibit hypsochromically shifted MCL, two-step MCL, self-recovering MCL, or mechanical-stimuli-induced single-crystal-to-single-crystal (SCSC) transitions. Rational design guidelines to control the mechanoresponsive properties of soft crystals have not yet been established. This review summarizes the systematic studies on the substituent effect to control the MCL properties of soft crystals. Recent studies provide useful insights into the effects of electronic and steric differences of substituents on crystal structure, luminescence properties, and mechanoresponsive behaviors.  相似文献   

2.
The design of molecular compounds that exhibit flexibility is an emerging area of research. Although a fair amount of success has been achieved in the design of plastic or elastic crystals, realizing multidimensional plastic and elastic bending remains challenging. We report herein a naphthalidenimine–boron complex that showed size-dependent dual mechanical bending behavior whereas its parent Schiff base was brittle. Detailed crystallographic and spectroscopic analysis revealed the importance of boron in imparting the interesting mechanical properties. Furthermore, the luminescence of the molecule was turned-on subsequent to boron complexation, thereby allowing it to be explored for multimode optical waveguide applications. Our in-depth study of the size-dependent plastic and elastic bending of the crystals thus provides important insights in molecular engineering and could act as a platform for the development of future smart flexible materials for optoelectronic applications.  相似文献   

3.
Bendable (elastic and plastic) organic single crystals have been widely studied as emerging flexible materials with highly ordered packing structures. However, even though manifold bendable organic crystals have been recently reported, most of them bend in response to only one stimulus. Herein, we report an organic single crystal of (Z)‐4‐(1‐cyano‐2‐(4‐(dimethylamino)phenyl)vinyl)benzonitrile, which bends under external stress (physical process) and also hydrochloric acid atmosphere (chemical process). This observation indicates that a single organic crystal, whose structure has been optimized simultaneously at both the molecular and supramolecular levels, may display multiple crystal‐bending modes. Furthermore, the crystals exhibit bright orange‐yellow emission and can serve as an active low‐loss optical waveguide in both the straight and the bent state, which indicates a potential optical application.  相似文献   

4.
Despite recent extensive studies on mechanochromic luminescence (MCL), rational control over the magnitude of the emission-wavelength shift in response to mechanical stimuli remains challenging. In the present study, a two-component donor-acceptor approach has been applied to create a variety of organic MCL composites that exhibit remarkable emission-wavelength switching. Dibenzofuran-based bis(1-pyrenylmethyl)diamine and typical organic fluorophores have been employed as donor and acceptor dyes, respectively. Outstanding wide-range MCL with an emission-wavelength shift of over 300 nm has been achieved by mixing the diamine with 3,4,9,10-perylenetetracarboxylic diimide. Unprecedented two-step MCL in response to mechanical stimuli of different intensity has also been realized for a two-component mixture with 9,10-anthraquinone. Fluorescence microscopy observations at the single-particle level revealed that the segregation and mixing of the two-component dyes contribute to the stimuli-responsive emission-color switching of the MCL composites.  相似文献   

5.
Synthetic calcite single crystals,due to their strong crystal habit,tend to grow into characteristic rhombohedra.In the nature,biogenic calcite crystals form composites together with biomacromolecular materials,spurring investigations of how the growing calcite single crystals change their habit to satisfy the curvature of the organic phase.In this work,we examine calcite crystallization on a flat surface of glass slide and a curved surface of polystyrene(PS)sphere.The crystals exhibit tiny contact area onto the glass substrate that is averagely only 15% of their projected area on the substrate.In sharp contrast,the contact area greatly increase to above 75% of the projected area,once magnesium ions or agarose gel networks are introduced into the crystallization media.Furthermore,the calcite crystals form rough and step-like interfaces with a curved surface.However,the interfaces become smooth and curved as the crystals grow in presence of magnesium ions or agarose gel networks.The discrepancy between the interfacial structures implies kinetic effects of the additives on the crystallization around the surfaces. This work may provide implications for understanding the formation mechanisms of single-crystal composite materials.  相似文献   

6.
A new material concept of soft crystals is proposed. Soft crystals respond to gentle stimuli such as vapor exposure and rubbing but maintain their structural order and exhibit remarkable visual changes in their shape, color, and luminescence. Various interesting examples of soft crystals are introduced in the article. By exploring the interesting formation and phase-transition phenomena of soft crystals through interdisciplinary collaboration, new materials having both the characteristics of ordered hard crystals and those of flexible soft matter are expected.  相似文献   

7.
Flexible organic crystals (elastic and plastic) are important materials for optical waveguides, tunable optoelectronic devices, and photonic integrated circuits. Here, we present highly elastic organic crystals of a Schiff base, 1-((E)-(2,5-dichlorophenylimino)methyl)naphthalen-2-ol ( 1 ), and an azine molecule, 2,4-dibromo-6-((E)-((E)-(2,6-dichlorobenzylidene)hydrazono)methyl)phenol ( 2 ). These microcrystals are highly flexible under external mechanical force, both in the macroscopic and the microscopic regimes. The mechanical flexibility of these crystals arises as a result of weak and dispersive C−H⋅⋅⋅Cl, Cl⋅⋅⋅Cl, Br⋅⋅⋅Br, and π⋅⋅⋅π stacking interactions. Singly and doubly-bent geometries were achieved from their straight shape by a micromechanical approach using the AFM cantilever tip. Crystals of molecules 1 and 2 display a bright-green and red fluorescence (FL), respectively, and selective reabsorption of a part of their FL band. Crystals 1 and 2 exhibit optical-path-dependent low loss emissions at the termini of crystal in their straight and even in extremely bent geometries. Interestingly, the excitation position-dependent optical modes appear in both linear and bent waveguides of crystals 1 and 2 , confirming their light-trapping ability.  相似文献   

8.
Ultralong organic phosphorescence (UOP) of metal-free organic materials has received considerable attention recently owing to their long-lived emission lifetimes, and the fact that they present an attractive alternative to persistent luminescence in inorganic phosphors. Enormous research effort has been devoted on improving UOP performance in metal-free organic phosphors by promoting the intersystem crossing (ISC) process and suppressing the non-radiative decay of triplet state excitons. This minireview summarizes the recent advances in the rational approaches for manipulating the UOP properties of small molecular crystals, such as phosphorescence lifetime, efficiency, and emission colors. Finally, the present challenges and future development of this field are proposed. This review will provide a guideline to rationally design more advanced metal-free organic phosphorescence materials for potential applications.  相似文献   

9.
Mechanically compliant organic crystals are the foundation of the development of future flexible, light-weight single-crystal electronics, and this requires reversibly deformable crystalline organic materials with permanent magnetism. Here, we report and characterize the first instance of a plastically bendable single crystal of a permanent organic radical, 4-(4′-cyano-2′,3′,4′,5′-tetrafluorophenyl)-1,2,3,5-dithiadiazolyl. The weak interactions between the radicals render single crystals of the β phase of this material exceedingly soft, and the S–N interactions facilitate plastic bending. EPR imaging of a bent single crystal reveals the effect of deformation on the three-dimensional spin density of the crystal. The unusual mechanical compliance of this material opens prospects for exploration into flexible crystals of other stable organic radicals towards the development of flexible light-weight organic magnetoresistance devices based on weak, non-hydrogen-bonded interactions in molecular crystals.

Mechanically soft crystals are interesting candidates for single crystal electronics. Here, crystals of a stable dithiadiazolyl radical are shown to be plastically bendable and display a change in their spin density in response to mechanical force.  相似文献   

10.
Multi‐component organic nanocrystals that are comprised of two or more supramolecular building blocks can be used to extend the design and assembly scope of solid molecular materials. Herein, we report the use of ultrasonication to prepare halogen‐bonded stilbene‐based nano‐cocrystals that exhibit different photoemission properties, including one‐ and two‐phonon emission and fluorescence lifetimes, relative to those of macrodimensional crystals. The structural transformation from nano‐cocrystals into nanocrystals upon heating results in a luminescence red‐shift from greenish blue to yellow. The temperature‐dependent ratiometric luminescence may allow such nano‐cocrystals to be used as fluorescent sensors and thermosensitive materials.  相似文献   

11.
力致发光是一种力刺激诱导的发光现象。由于其独特的发光方式,使得力致发光材料在结构损伤检测、压力传感、显示和安全标记等方面展现出了巨大的应用价值。目前已报道的力致发光材料大多基于无机材料体系,而有机力致发光材料体系相对较少,并且人们对其发光机理的认识仍不清晰。在本文中,我们发现锰(Ⅱ)配合物[BPP]2[Mn Br4]具有力致发光特性,并在此基础上设计合成了一系列具有力致发光性质的四卤化锰(Ⅱ)配合物。改变有机阳离子配体或者卤素阴离子可对其光物理性质进行有效调控。固态下,这些锰(Ⅱ)配合物均显示出了较强的光致发光现象,同时表现出了明显的力致发光特性。晶体结构分析表明,分子内/分子间强的C―H…X (X=Br或Cl)相互作用对锰(Ⅱ)配合物的力致发光起到了至关重要的作用,它可在较大程度上降低由分子振动和旋转造成的能量损失。本工作将为力刺激响应型材料体系的拓展提供一定的参考价值。  相似文献   

12.
Mechanical characterization of protein molecules has played a role on gaining insight into the biological functions of proteins, because some proteins perform the mechanical function. Here, we present the mesoscopic model of biological protein materials composed of protein crystals prescribed by Go potential for characterization of elastic behavior of protein materials. Specifically, we consider the representative volume element (RVE) containing the protein crystals represented by C(alpha) atoms, prescribed by Go potential, with application of constant normal strain to RVE. The stress-strain relationship computed from virial stress theory provides the nonlinear elastic behavior of protein materials and their mechanical properties such as Young's modulus, quantitatively and/or qualitatively comparable with mechanical properties of biological protein materials obtained from experiments and/or atomistic simulations. Further, we discuss the role of native topology on the mechanical properties of protein crystals. It is shown that parallel strands (hydrogen bonds in parallel) enhance the mechanical resilience of protein materials.  相似文献   

13.
掺锗SiO2 玻璃的发光现象;Ge/SiO2玻璃;Ge纳米晶粒;溶胶-凝胶;光致发光  相似文献   

14.
Ferroelasticity involves the generation of spontaneous strain in a solid by the application of mechanical stress. The phenomenon has been well‐studied in metal alloys but relatively neglected in organic solid‐state chemistry. Herein we present multiple discrete modes of mechanical twinning and a mechanistic analysis of ferroelasticity in 1,4‐diethoxybenzene. Single crystals of the compound can be almost freely deformed, as multiple different twin domains are generated simultaneously. Within each domain, single‐crystal character is preserved. Such extremely versatile, ferroelastic deformability is unprecedented in single crystals of any kind and defies the fragility and anisotropic mechanical behaviour of most organic crystals. The dissipated energy and critical stress associated with twinning deformation in 1,4‐diethoxybenzene suggests that organic solids could be developed for absorbing weak mechanical shocks in such applications as mechanical damping and soft robotics.  相似文献   

15.
Mechanical twinning changes atomic, molecular, and crystal orientations along with directions of the anisotropic properties of the crystalline materials while maintaining single crystallinity in each domain. However, such deformability has been less studied in brittle organic crystals despite their remarkable anisotropic functions. Herein we demonstrate a direction‐dependent mechanical twinning that shows superelasticity in one direction and ferroelasticity in two other directions in a single crystal of 1,3‐bis(4‐methoxyphenyl)urea. The crystal can undergo stepwise twinning and ferroelastically forms various shapes with multiple domains oriented in different directions, thereby affording a crystal that shows superelasticity in multiple directions. This adaptability and shape recoverability in a ferroelastic and superelastic single crystal under ambient conditions are of great importance in future applications of organic crystals as mechanical materials, such as in soft robotics.  相似文献   

16.
Proton-conducting materials in the solid state have received immense attention for their role as electrolytes in proton-exchange membrane fuel cells. Recently, crystalline materials—metal–organic frameworks (MOFs), hydrogen-bonded organic frameworks (HOFs), covalent organic frameworks (COFs), polyoxometalates (POMs), and porous organic crystals—have become an exciting research topic in the field of proton-conducting materials. For a better electrolyte, a high proton conductivity on the order of 10−2 S cm−1 or higher is preferred as efficient proton transport between the electrodes is ultimately necessary. With an emphasis on design principles, this Concept will focus on MOFs and other crystalline solid-based proton-conducting platforms that exhibit “ultrahigh superprotonic” conductivities with values in excess of 10−2 S cm−1. While only a handful of MOFs exhibit such an ultrahigh conductivity, this quality in other systems is even rarer. In addition to interpreting the structural–functional correlation by taking advantage of their crystalline nature, we address the challenges and promising directions for future research.  相似文献   

17.
Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS-P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending-induced ferroelastic transition of TIPS-P, flexible single-crystal electronic devices were obtained that can tolerate strains (ϵ) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (μ>0.7 μ0). Our work will pave the way for high-performance ultraflexible single-crystal organic electronics for sensors, memories, and robotic applications.  相似文献   

18.
Responsive photonic crystals have potential applications in mechanical sensors and soft displays; however, new materials are constantly desired to provide new innovations and improve on existing technologies. To address this, we report stretchable chiral nematic cellulose nanocrystal (CNC) elastomer composites that exhibit reversible visible color upon the application of mechanical stress. When stretched (or compressed) the colorless materials maintain their chiral nematic structure but the helical pitch is reduced into the visible region, resulting in coloration of the CNC‐elastomer composite. By increasing the percentage elongation of the material (ca. 50–300 %), the structural color can be tuned from red to blue. The color of the materials was characterized by reflectance optical microscopy and reflectance circular dichroism to confirm the wavelength and polarization of the reflected light. We also probed the mechanism of the structural color using 2D‐X‐ray diffraction. Finally, by either water‐patterning the starting CNC film, or by forming a CNC film with gradient color, through masked evaporation, we were able to prepare encoded stretchable chiral nematic CNC‐elastomers.  相似文献   

19.
刺激响应型有机小分子凝胶的研究进展   总被引:2,自引:0,他引:2  
智能型凝胶是近年来有机小分子凝胶的研究重点, 其中刺激响应型有机小分子智能凝胶对外界微小的物理、化学刺激, 如温度、光、pH、离子强度或电场等能够感知并在响应过程中有显著的响应行为性. 较系统地综述了刺激响应型有机小分子智能凝胶的结构特点和近年来的研究进展, 并展望了该类有机小分子智能凝胶的应用前景.  相似文献   

20.
Hydrogen-bonded organic frameworks (HOFs) are a diverse and tunable class of materials, but their potential as free-standing two-dimensional nanomaterials has yet to be explored. Here we report the self-assembly of two layered hydrogen-bonded frameworks based on strong, charge-assisted hydrogen-bonding between carboxylate and amidinium groups. Ultrasound-assisted liquid exfoliation of both materials readily produces monolayer hydrogen-bonded organic nanosheets (HONs) with micron-sized lateral dimensions. The HONs show remarkable stability and maintain their extended crystallinity and monolayer structures even after being suspended in water at 80 °C for three days. These systems also exhibit efficient fluorescence quenching of an organic dye in organic solvents, superior to the quenching ability of the bulk frameworks. We anticipate that this approach will provide a route towards a diverse new family of molecular two-dimensional materials.

We report the liquid-phase ultrasonic exfoliation of two layered hydrogen-bonded frameworks into monolayer, micron-sized, and water-stable nanosheets (HONs) connected purely by hydrogen-bonding interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号