首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In centralized massive multiple-input multiple-output (MIMO) systems, the channel hardening phenomenon can occur, in which the channel behaves as almost fully deterministic as the number of antennas increases. Nevertheless, in a cell-free massive MIMO system, the channel is less deterministic. In this paper, we propose using instantaneous channel state information (CSI) instead of statistical CSI to obtain the power control coefficient in cell-free massive MIMO. Access points (APs) and user equipment (UE) have sufficient time to obtain instantaneous CSI in a slowly time-varying channel environment. We derive the achievable downlink rate under instantaneous CSI for frequency division duplex (FDD) cell-free massive MIMO systems and apply the results to the power control coefficients. For FDD systems, quantized channel coefficients are proposed to reduce feedback overhead. The simulation results show that the spectral efficiency performance when using instantaneous CSI is approximately three times higher than that achieved using statistical CSI.  相似文献   

2.
Massive multiple-input multiple-output (MIMO) is a key technology for modern wireless communication systems. In massive MIMO receivers, data detection is a computationally expensive task. In this paper, we explore the performance and the computational complexity of matrix decomposition based detectors in realistic channel scenarios for different massive MIMO configurations. In addition, data detectors based on decomposition algorithms are compared to the approximate-inversion detection (AID) methods. It is shown that the alternating-direction-method-of-multipliers-based-Infinity-Norm (ADMIN) detection is promising in realistic channel environment and the performance is stable even when the ratio of the base-station (BS) antenna elements to the number of users is small. In addition, this paper studies the performance of several detectors in imperfect channel state information (CSI) and correlated channels. Our work provides valuable insights for massive MIMO systems and very large-scale integration (VLSI) designers to select the appropriate massive MIMO detector based on their specifications.  相似文献   

3.
In massive multiple-input multiple-output (MIMO), it is much challenging to obtain accurate channel state information (CSI) after radio frequency (RF) chain reduction due to the high dimensions. With the fast development of machine learning(ML), it is widely acknowledged that ML is an effective method to deal with channel models which are typically unknown and hard to approximate. In this paper, we use the low complexity vector approximate messaging passing (VAMP) algorithm for channel estimation, combined with a deep learning framework for soft threshold shrinkage function training. Furthermore, in order to improve the estimation accuracy of the algorithm for massive MIMO channels, an optimized threshold function is proposed. This function is based on Gaussian mixture (GM) distribution modeling, and the expectation maximum Algorithm (EM Algorithm) is used to recover the channel information in beamspace. This contraction function and deep neural network are improved on the vector approximate messaging algorithm to form a high-precision channel estimation algorithm. Simulation results validate the effectiveness of the proposed network.  相似文献   

4.
In frequency-division duplexing (FDD) cell-free massive multiple-input multiple-output (MIMO) systems, an excessive channel estimation overhead is a critical issue that limits the system performance. In this paper, by exploiting the sparse channel characteristics of such a cell-free system, we apply compressive sensing to estimate the channel state information and solve the excessive pilot overhead problem. The proposed algorithm estimates several channel coefficients with significant gains in the power domain and ignores the approximately zero coefficients. Compared to minimum mean square error (MMSE) estimation with orthogonal pilots, the proposed method significantly reduces the pilot overhead in an FDD cell-free massive MIMO system. The access points (APs) that contribute low gains feature reduced energy consumption because the power coefficients corresponding to zero gains in the sparse channel are assigned zeros in the power control process. Therefore, to improve the energy efficiency, the ignored channel coefficients reduce the power overhead.  相似文献   

5.
In the user-centric, cell-free, massive multi-input, multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) system, a large number of deployed access points (APs) serve user equipment (UEs) simultaneously, using the same time–frequency resources, and the system is able to ensure fairness between each user; moreover, it is robust against fading caused by multi-path propagation. Existing studies assume that cell-free, massive MIMO is channel-hardened, the same as centralized massive MIMO, and these studies address power allocation and energy efficiency optimization based on the statistics information of each channel. In cell-free, massive MIMO systems, especially APs with only one antenna, the channel statistics information is not a complete substitute for the instantaneous channel state information (CSI) obtained via channel estimation. In this paper, we propose that energy efficiency is optimized by power allocation with instantaneous CSI in the user-centric, cell-free, massive MIMO-OFDM system, and we consider the effect of CSI exchanging between APs and the central processing unit. In addition, we design different resource block allocation schemes, so that user-centric, cell-free, massive MIMO-OFDM can support enhanced mobile broadband (eMBB) for high-speed communication and massive machine communication (mMTC) for massive device communication. The numerical results verify that the proposed energy efficiency optimization scheme, based on instantaneous CSI, outperforms the one with statistical information in both scenarios.  相似文献   

6.
Multicast hybrid precoding reaches a compromise among hardware complexity, transmission performance and wireless resource efficiency in massive MIMO systems. However, system security is extremely challenging with the appearance of eavesdroppers. Physical layer security (PLS) is a relatively effective approach to improve transmission and security performance for multicast massive MIMO wiretap systems. In this paper, we consider a transmitter with massive antennas transmits the secret signal to many legitimate users with multiple-antenna, while eavesdroppers attempt to eavesdrop the information. A fractional problem aims at maximizing sum secrecy rate is proposed to optimize secure hybrid precoding in multicast massive MIMO wiretap system. Because the proposed optimized model is an intractable non-convex problem, we equivalently transform the original problem into two suboptimal problems to separately optimize the secure analog precoding and secure digital precoding. Secure analog precoding is achieved by applying singular value decomposition (SVD) of secure channel. Then, employing semidefinite program (SDP), secure digital precoding with fixed secure analog precoding is obtained to ensure quality of service (QoS) of legitimate users and limit QoS of eavesdroppers. Complexity of the proposed SVD-SDP algorithm related to the number of transmitting antennas squared is lower compared with that of constant modulus precoding algorithm (CMPA) which is in connection with that number cubed. Simulation results illustrate that SVD-SDP algorithm brings higher sum secrecy rate than those of CMPA and SVD-SVD algorithm.  相似文献   

7.
We have studied massive MIMO hybrid beamforming (HBF) for millimeter-wave (mmWave) communications, where the transceivers only have a few radio frequency chain (RFC) numbers compared to the number of antenna elements. We propose a hybrid beamforming design to improve the system’s spectral, hardware, and computational efficiencies, where finding the precoding and combining matrices are formulated as optimization problems with practical constraints. The series of analog phase shifters creates a unit modulus constraint, making this problem non-convex and subsequently incurring unaffordable computational complexity. Advanced deep reinforcement learning techniques effectively handle non-convex problems in many domains; therefore, we have transformed this non-convex hybrid beamforming optimization problem using a reinforcement learning framework. These frameworks are solved using advanced deep reinforcement learning techniques implemented with experience replay schemes to maximize the spectral and learning efficiencies in highly uncertain wireless environments. We developed a twin-delayed deep deterministic (TD3) policy gradient-based hybrid beamforming scheme to overcome Q-learning’s substantial overestimation. We assumed a complete channel state information (CSI) to design our beamformers and then challenged this assumption by proposing a deep reinforcement learning-based channel estimation method. We reduced hybrid beamforming complexity using soft target double deep Q-learning to exploit mmWave channel sparsity. This method allowed us to construct the analog precoder by selecting channel dominant paths. We have demonstrated that the proposed approaches improve the system’s spectral and learning efficiencies compared to prior studies. We have also demonstrated that deep reinforcement learning is a versatile technique that can unleash the power of massive MIMO hybrid beamforming in mmWave systems for next-generation wireless communication.  相似文献   

8.
This work studies system design methods for the uplink multi-user orthogonal time–frequency space (OTFS) channel which forms a virtual multiple-input multiple-output (MIMO) communication system. For such system, the received signal contains interferences in the space, frequency, and time domain at the same time. To reduce the computational complexity, this work proposes to decompose the original large MIMO channel into parallel small sub-channels in the following order: first to decompose in the space domain, then to decompose in the time domain, thereby reducing the computational complexity. To help achieve channel decomposition, the proposed method requires the transmitter to perform precoding that needs channel state information (CSI) feedback. However, the proposed method only needs partial CSI feedback including delay and Doppler shift, so the feedback burden is small. Simulation results of the bit error rate (BER) performance verify that the proposed channel decomposition method is effective.  相似文献   

9.
In this paper, we propose a novel broad coverage precoder design for three-dimensional (3D) massive multi-input multi-output (MIMO) equipped with huge uniform planar arrays (UPAs). The desired two-dimensional (2D) angle power spectrum is assumed to be separable. We use the per-antenna constant power constraint and the semi-unitary constraint which are widely used in the literature. For normal broad coverage precoder design, the dimension of the optimization space is the product of the number of antennas at the base station (BS) and the number of transmit streams. With the proposed method, the design of the high-dimensional precoding matrices is reduced to that of a set of low-dimensional orthonormal vectors, and of a pair of low-dimensional vectors. The dimensions of the vectors in the set and the pair are the number of antennas per column and per row of the UPA, respectively. We then use optimization methods to generate the set of orthonormal vectors and the pair of vectors, respectively. Finally, simulation results show that the proposed broad coverage precoding matrices achieve nearly the same performance as the normal broad coverage precoder with much lower computational complexity.  相似文献   

10.
User scheduling (US) is the process of dynamic selection of the set of active users out of all available users to serve in each time slot. This is done to optimize the system performance, such as maximizing the sum rate, achieving better fairness, and quality of service or minimizing the interference. The choice of US method depends on the desired system performance and the trade-off between fairness and efficiency. In order to achieve these performance metrics base station (BS) needs channel state information (CSI) of each user for efficient US. Moreover, US and CSI feedback are closely related in the context of conventional multiple-input multiple-output (MIMO) to massive MIMO (mMIMO) systems based on full and limited CSI, as feedback information is often used to make informed decisions on US. To address these objectives simultaneously, this survey deals with exploring different algorithms used for efficient US, various criteria for US considering different scenarios, key methods for user grouping, methods for reduced feedback, and different standard codebook based feedback methods. To be more specific and concise, this article provides a comprehensive survey on state of the art methods used for US in single cell single tier, dual stage (double tier), multi cell scenarios and feedback mechanisms used in various contexts, e.g., multiuser (MU)-MIMO, MU-mMIMO, frequency division duplexing (FDD) mMIMO framework. Moreover, a synopsis of the recently proposed advanced codebook and non-codebook based methods for the long term evolution standards, fifth generation, and beyond communications are discussed. Finally the research gaps as the future scopes are discussed in this article.  相似文献   

11.
In this contribution we present the performance of a multi-user transmitter preprocessing (MUTP) assisted multiple-input multiple-output (MIMO) space division multiple access (SDMA) system, aided by double space time transmit diversity (DSTTD) and space time block code (STBC) processing for downlink (DL) and uplink (UL) transmissions respectively. The MUTP is invoked by singular value decomposition (SVD) which exploits the channel state information (CSI) of all the users at the base station (BS) and only an individual user’s CSI at the mobile station (MS). Specifically, in this contribution, we investigate the performance of multi-user MIMO cellular systems in frequency-selective channels from a transmitter signal processing perspective, where multiple access interference (MAI) is the dominant channel impairment. In particular, the effects of three types of delay spread distributions on MUTP assisted MIMO SDMA systems pertaining to the Long Term Evolution (LTE) channel model are analyzed. The simulation results demonstrate that MUTP can perfectly eliminate MAI in addition to obviating the need for complex multi-user detectors (MUDs) both at the BS and MS. Further, SVD-based MUTP results in better achievable symbol error rate (SER) compared to popularly known precoding schemes such as block diagonalization (BD), dirty paper coding (DPC), Tomlinson–Harashima precoding (THP) and geometric mean decomposition (GMD). Furthermore, when turbo coding is invoked, coded SVD aided MUTP results in better achievable SER than an uncoded system.  相似文献   

12.
Massive multiple input multiple output (MIMO), also known as a very large-scale MIMO, is an emerging technology in wireless communications that increases capacity compared to MIMO systems. The massive MIMO communication technique is currently forming a major part of ongoing research. The main issue for massive MIMO improvements depends on the number of transmitting antennas to increase the data rate and minimize bit error rate (BER). To enhance the data rate and BER, new coding and modulation techniques are required. In this paper, a generalized spatial modulation (GSM) with antenna grouping space time coding technique (STC) is proposed. The proposed GSM-STC technique is based on space time coding of two successive GSM-modulated data symbols on two subgroups of antennas to improve data rate and to minimize BER. Moreover, the proposed GSM-STC system can offer spatial diversity gains and can also increase the reliability of the wireless channel by providing replicas of the received signal. The simulation results show that GSM-STC achieves better performance compared to conventional GSM techniques in terms of data rate and BER, leading to good potential for massive MIMO by using subgroups of antennas.  相似文献   

13.
The requirement of excellent anywhere–anytime data transmission service in future wireless network encourages us to reconsider the fairness among different types of users. To this end, the three-dimensional Poisson point process (PPP) model-based closed-form expressions of coverage probability for both cell-edge user (CEU) and cell inner user (CIU) under multi-user multiple-input multiple-output (MIMO) are derived. It is found that the spectral efficiency of CEU is about 30% of that of CIU under single user scenario. Moreover, when the number of users equals to that of base station (BS) antennas, the difference of coverage probability between CIU and CEU decreases with the number of BS antennas for large signal-to-interference ratio threshold. In addition, for the fixed number of users case, an inverted U-shaped relationship (thereby resulting in a worst case) between the fairness among CEU and CIU, and the number of BS antennas is detected. The impact of massive MIMO on the fairness under the metric of spectral efficiency is also discussed.  相似文献   

14.
Massive multiple-input-multiple-output (Massive MIMO) significantly improves the capacity of wireless communication systems. However, large-scale antennas bring high hardware costs, and security is a vital issue in Massive MIMO networks. To deal with the above problems, antenna selection (AS) and artificial noise (AN) are introduced to reduce energy consumption and improve system security performance, respectively. In this paper, we optimize secrecy energy efficiency (SEE) in a downlink multi-user multi-antenna scenario, where a multi-antenna eavesdropper attempts to eavesdrop the information from the base station (BS) to the multi-antenna legitimate receivers. An optimization problem is formulated to maximize the SEE by jointly optimizing the transmit beamforming vectors, the artificial noise vector and the antenna selection matrix at the BS. The formulated problem is a nonconvex mixed integer fractional programming problem. To solve the problem, a successive convex approximation (SCA)-based joint antenna selection and artificial noise (JASAN) algorithm is proposed. After a series of relaxation and equivalent transformations, the nonconvex problem is approximated to a convex problem, and the solution is obtained after several iterations. Simulation results show that the proposed algorithm has good convergence behavior, and the joint optimization of antenna selection and artificial noise can effectively improve the SEE while ensuring the achievable secrecy rate.  相似文献   

15.
We consider the massive Multiple Input Multiple Output (MIMO) channel affected by independent and identically distributed Rayleigh fading, with linear processing at both transmitter and receiver sides to pursue full diversity, and analyze its outage capacity for large number of antennas. We first discuss the classical Single Input Multiple Output (SIMO) diversity channel that encompasses Maximal Ratio Combining (MRC) or Selection Combining (SC). For MRC, a numerical computation and a Gaussian Approximation (GA) are considered, whereas for SC an exact evaluation is presented. The analysis is then straightforwardly extended to the Multiple Input Single Output (MISO) diversity channel that encompasses Maximal Ratio Transmission (MRT) or transmit antenna selection. The general full diversity MIMO channel is finally considered, with optimal linear processing or simple antenna selection at both transmitter and receiver. If the number of antennas is sufficiently large on at least one side, the outage capacity of each considered diversity channel approaches that of a reference Additive White Gaussian Noise (AWGN) channel with properly defined Signal-to-Noise Ratio (SNR), which provides a performance benchmark. This conclusion is valid for large but realistic number of antennas compatible with the assumption of independent fading.  相似文献   

16.
In this article, the sum secure degrees-of-freedom (SDoF) of the multiple-input multiple-output (MIMO) X channel with confidential messages (XCCM) and arbitrary antenna configurations is studied, where there is no channel state information (CSI) at two transmitters and only delayed CSI at a multiple-antenna, full-duplex, and decode-and-forward relay. We aim at establishing the sum-SDoF lower and upper bounds. For the sum-SDoF lower bound, we design three relay-aided transmission schemes, namely, the relay-aided jamming scheme, the relay-aided jamming and one-receiver interference alignment scheme, and the relay-aided jamming and two-receiver interference alignment scheme, each corresponding to one case of antenna configurations. Moreover, the security and decoding of each scheme are analyzed. The sum-SDoF upper bound is proposed by means of the existing SDoF region of two-user MIMO broadcast channel with confidential messages (BCCM) and delayed channel state information at the transmitter (CSIT). As a result, the sum-SDoF lower and upper bounds are derived, and the sum-SDoF is characterized when the relay has sufficiently large antennas. Furthermore, even assuming no CSI at two transmitters, our results show that a multiple-antenna full-duplex relay with delayed CSI can elevate the sum-SDoF of the MIMO XCCM. This is corroborated by the fact that the derived sum-SDoF lower bound can be greater than the sum-SDoF of the MIMO XCCM with output feedback and delayed CSIT.  相似文献   

17.
In massive multiple-input multiple-output (MIMO) systems, the substantial increase in the number of antennas leads to a surge in hardware cost and power consumption. Meanwhile, the impact of IQ imbalance (IQI) on system performance also tends to be serious. In this paper, closed-form expressions for the achievable rates of maximum-ratio combining (MRC) receivers are derived for uplink massive MIMO systems with both low-resolution analog-to-digital converters (ADCs) and IQI. Based on the derived closed-form expression, the influence of system parameters on the achievable rate is analyzed. The simulation results verify the accuracy of the theoretical results. It is found that low-resolution ADC and IQI will degrade the achievable rate compared with employing high resolution ADCs, but this loss can be compensated for by increasing the number of base station (BS) antennas, so as to significantly increase the energy efficiency.  相似文献   

18.
19.
Initial access (IA) in 5G millimeter wave (mmWave) communication is the problem of establishing a directional link between the base station (BS) and the user equipment (UE). For a multiple-input multiple-output (MIMO) system, where both the BS and UE have many antennas, finding the optimal beams can be prohibitively expensive in terms of delay and computation. In this work, we propose a meta-heuristic approach which is a modified dual-phase genetic algorithm. Since it is a meta-heuristic approach, it is generic and hence does not require extensive modifications to apply to different scenarios, it also does not require context information such as prior knowledge of channel state or statistics of user behavior. The proposed method is using iterative search for the optimal beams, but switch to a different fine-grained search phase on later iterations in order to quickly converge to the local optimum. The effect of this approach is analyzed in terms of capacity achieved vs number of transmit and receive antennas at BS and UE, codebook size, outage probability, total transmitted power, and other parameters specific to this particular dual-phase method. The proposed work has shown improved performance when compared to the existing similar work done in Souto et al. (2019) in terms of capacity achieved (2.12%), reduced power consumption (8.57%), and reduced IA delay (35% to 50%).  相似文献   

20.
Massive multiple-input multiple-output (MIMO) is a key enabler for 5G and beyond. For signal detection of massive MIMO, computing resources available at the network edge were underexplored in most existing algorithms. For this reason, the paper proposes a new detection algorithm, termed inner-looping decentralized generalized expectation consistent for signal recovery (iDeGEC-SR), which leverages an extra (inner) loop of message passing added to the DeGEC-SR and makes better exploration of the local computing resources. As demonstrated by theoretical analysis and Monte Carlo simulations, the algorithm outperforms state-of-the-art techniques like GEC-SR (in terms of computational complexity), GAMP and DeGEC-SR (in terms of estimation accuracy), considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号