首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates a reconfigurable intelligent surface (RIS)-aided underlay cognitive radio (CR) multiple-input multiple-output (MIMO) wiretap channel where the secondary transmitter (ST) communicates with primary user (PU) and secondary user (SU) in the absence of the eavesdropper’s (Eve’s) channel state information (CSI). To enhance the secrecy performance in CR MIMO wiretap channel, the power of useful signal is minimized at ST, and then the residual power is further utilized to design artificial noise (AN) based on statistical CSI at ST. Specifically, we first optimize the transmit covariance matrix at ST and the diagonal phase-shifting matrix at RIS jointly leveraging large-system approximation results. Then the power allocation for SU is optimized to obtain the minimum transmit power of useful information at ST. Besides, we further design AN with the residual power by aligning it into the null space of the SU channel and thus avert the harmful effects of AN to improve the secure communication quality of SU. Finally, through numerical simulations, we illustrate the effectiveness of the proposed algorithm and validate the existence of a trade-off between the quality-of-service (QoS) at SU and secrecy rate.  相似文献   

2.
朱江  王雁  杨甜 《物理学报》2018,67(5):50201-050201
宽带无线通信用户大多处在复杂的环境中,其时变多径传播和开放特性将严重影响通信系统的性能.针对物理层安全研究中的窃听信道问题,提出了一种适用于宽带无线多径信道的联合时间反演技术和发端人工噪声的物理层安全传输机制.首先,在一个典型窃听信道模型中采用时间反演技术,利用其时空聚焦性来提高信息在传输过程中的安全性;其次,由于时间反演的时空聚焦性,信息在聚焦点附近容易被窃听,通过在发送端加入人工噪声来扰乱窃听用户对保密信息的窃听,由于合法用户采用零空间人工噪声法,人工噪声对合法用户没有影响.理论分析和仿真结果表明,与已有物理层安全机制相比,所提机制可以有效地提高系统的保密信干噪比和可达保密速率,降低合法用户的误比特率,系统的保密性能得到提升.  相似文献   

3.
Massive multiple-input-multiple-output (Massive MIMO) significantly improves the capacity of wireless communication systems. However, large-scale antennas bring high hardware costs, and security is a vital issue in Massive MIMO networks. To deal with the above problems, antenna selection (AS) and artificial noise (AN) are introduced to reduce energy consumption and improve system security performance, respectively. In this paper, we optimize secrecy energy efficiency (SEE) in a downlink multi-user multi-antenna scenario, where a multi-antenna eavesdropper attempts to eavesdrop the information from the base station (BS) to the multi-antenna legitimate receivers. An optimization problem is formulated to maximize the SEE by jointly optimizing the transmit beamforming vectors, the artificial noise vector and the antenna selection matrix at the BS. The formulated problem is a nonconvex mixed integer fractional programming problem. To solve the problem, a successive convex approximation (SCA)-based joint antenna selection and artificial noise (JASAN) algorithm is proposed. After a series of relaxation and equivalent transformations, the nonconvex problem is approximated to a convex problem, and the solution is obtained after several iterations. Simulation results show that the proposed algorithm has good convergence behavior, and the joint optimization of antenna selection and artificial noise can effectively improve the SEE while ensuring the achievable secrecy rate.  相似文献   

4.
This paper investigates the secure transmission for simultaneous wireless information and power transfer (SWIPT) in the cell-free massive multiple-input multiple-output (MIMO) system. To develop green communication, legitimate users harvest energy by the hybrid time switching (TS) and power splitting (PS) strategy in the downlink phase, and the harvested energy can provide power to send uplink pilot sequences for the next time slot. By in-built batteries, the active eavesdropper can send the same pilots with the wiretapped user, which results in undesirable correlations between the channel estimates. Under these scenarios, we derive the closed-form expressions of average harvested energy and achievable rates, and propose an iterative power control (PC) scheme based on max–min fairness algorithm with energy and secrecy constraints (MMF-ESC). This scheme can ensure the uniform good services for all users preserving the distributed architecture advantage of cell-free networks, while meeting the requirements of energy harvested by legitimate users and network security against active eavesdroppers. Besides, continuous approximation, bisection and path tracking are jointly applied to cope with the high-complexity and non-convex optimization. Numerical results demonstrate that MMF-ESC PC scheme can effectively increase the achievable rate and the average harvested energy of each user, and decrease the eavesdropping rate below the threshold. Moreover, the results also reveal that PS strategy is superior in harvesting energy in terms of more stringent network requirements for average achievable rates or security.  相似文献   

5.
Non-orthogonal multiple access (NOMA), as a well-qualified candidate for sixth-generation (6G) mobile networks, has been attracting remarkable research interests due to high spectral efficiency and massive connectivity. The aim of this study is to maximize the secrecy sum rate (SSR) for a multiple-input multiple-output (MIMO)-NOMA uplink network under the maximum total transmit power and quality of service (QoS) constraints. Thanks to the generalized singular value decomposition method, the SSR of NOMA is compared with conventional orthogonal multiple access and other baseline algorithms in different MIMO scenarios. Due to the subtractive and non-convex nature of the SSR problem, the first-order Taylor approximation is exploited to transform the original problem into a suboptimal concave problem. Simulation results are provided and compared with some other benchmarks to evaluate the efficacy of the proposed method.  相似文献   

6.
In this paper, we investigate the physical-layer security of a secure communication in single-input multiple-output (SIMO) cognitive radio networks (CRNs) in the presence of two eavesdroppers. In particular, both primary user (PU) and secondary user (SU) share the same spectrum, but they face with different eavesdroppers who are equipped with multiple antennas. In order to protect the PU communication from the interference of the SU and the risks of eavesdropping, the SU must have a reasonable adaptive transmission power which is set on the basis of channel state information, interference and security constraints of the PU. Accordingly, an upper bound and lower bound for the SU transmission power are derived. Furthermore, a power allocation policy, which is calculated on the convex combination of the upper and lower bound of the SU transmission power, is proposed. On this basis, we investigate the impact of the PU transmission power and channel mean gains on the security and system performance of the SU. Closed-form expressions for the outage probability, probability of non-zero secrecy capacity, and secrecy outage probability are obtained. Interestingly, our results show that the strong channel mean gain of the PU transmitter to the PU’s eavesdropper in the primary network can enhance the SU performance.  相似文献   

7.
Motivated by recent developments in heterogeneous cellular networks and physical-layer security, we aim to characterize the fundamental limits of secure communication in networks. Based on a general model in which both transmitters and receivers are randomly scattered in space, we model the locations of K-tier base stations, users, and potential eavesdroppers as independent two-dimensional Poisson point processes. Using the proposed model, we analyze the achievable secrecy rates for an arbitrarily located mobile user. Assuming that the cell selection is based on achievable-secrecy-rate threshold, we obtain approximations for: (a) secrecy coverage probability and (b) average secrecy load per tier. We also investigate how the network performance is affected by secrecy rate threshold, eavesdropper density, and different access strategies are analyzed, respectively. Finally, our theoretical claims are confirmed by the numerical results.  相似文献   

8.
In this paper, we evaluate the secrecy performance of an intelligent reflecting surface (IRS)-assisted device-to-device (D2D) communication in spectrum-shared cellular networks. To this end, we derive novel closed-form expressions for the secrecy outage probability (SOP) and the asymptotic SOP in the presence of multiple eavesdroppers. In the continue, in order to dynamically access the spectrum band of the licensed users, we define the optimization problem of secrecy spectrum resource allocation to minimize the SOP as a mixed-integer linear programming (MILP) problem. Then, the globally optimal solutions to this problem are obtained by using the Hungarian algorithm. Numerical analyses show that increasing the reflective elements of IRS can improve the secrecy performance.  相似文献   

9.
We investigate a bitstream-based adaptive-connected massive multiple-input multiple-output (MIMO) architecture that trades off between high-power full-connected and low-performance sub-connected hybrid precoding architectures. The proposed adaptive-connected architecture which enables each data stream to be computed independently and in parallel, consists of fewer phase shifters (PS) and switches than the other adaptive-connected architectures. With smaller array groups, the proposed architecture uses fewer PS and switches, so that its power consumption gradually decreases in millimeter wave (mmWave) Multiuser MIMO (MU-MIMO) system. To fully demonstrate the performance of the proposed architecture in mmWave MU-MIMO system with practical constraints, we combine the connection-state matrix with the hybrid precoders and combiners to maximize energy efficiency (EE) of the system equipped with the proposed architecture. We then propose the hybrid precoding and combining (HPC) scheme suitable for multi-user and multi-data streams which utilizes the SCF algorithm to obtain the constant modulus of the analog precoder at convergence. In the digital precoding and combining stage, the digital precoder and combiner are designed to reduce the amount of computation by utilizing the singular value decomposition (SVD) of corresponding equivalent channel. In the mmWave MU-MIMO-OFDM system equipped with the proposed architecture, with the increase of the total number of data streams, simulation results demonstrate that we can exploit the proposed HPC scheme to achieve better EE than the traditional hybrid full-connected architecture exploiting some existing schemes.  相似文献   

10.
With the emergence of wireless networks, cooperation for secrecy is recognized as an attractive way to establish secure communications. Departing from cryptographic techniques, secrecy can be provided by exploiting the wireless channel characteristics; that is, some error-correcting codes besides reliability have been shown to achieve information-theoretic security. In this paper, we propose a polar-coding-based technique for the primitive relay wiretap channel and show that this technique is suitable to provide information-theoretic security. Specifically, we integrate at the relay an additional functionality, which allows it to smartly decide whether it will cooperate or not based on the decoding detector result. In the case of cooperation, the relay operates in a decode-and-forward mode and assists the communication by transmitting a complementary message to the destination in order to correctly decode the initial source’s message. Otherwise, the communication is completed with direct transmission from source to the destination. Finally, we first prove that the proposed encoding scheme achieves weak secrecy, then, in order to overcome the obstacle of misaligned bits, we implement a double-chaining construction, which achieves strong secrecy.  相似文献   

11.
The open nature of radio propagation enables ubiquitous wireless communication. This allows for seamless data transmission. However, unauthorized users may pose a threat to the security of the data being transmitted to authorized users. This gives rise to network vulnerabilities such as hacking, eavesdropping, and jamming of the transmitted information. Physical layer security (PLS) has been identified as one of the promising security approaches to safeguard the transmission from eavesdroppers in a wireless network. It is an alternative to the computationally demanding and complex cryptographic algorithms and techniques. PLS has continually received exponential research interest owing to the possibility of exploiting the characteristics of the wireless channel. One of the main characteristics includes the random nature of the transmission channel. The aforesaid nature makes it possible for confidential and authentic signal transmission between the sender and the receiver in the physical layer. We start by introducing the basic theories of PLS, including the wiretap channel, information-theoretic security, and a brief discussion of the cryptography security technique. Furthermore, an overview of multiple-input multiple-output (MIMO) communication is provided. The main focus of our review is based on the existing key-less PLS optimization techniques, their limitations, and challenges. The paper also looks into the promising key research areas in addressing these shortfalls. Lastly, a comprehensive overview of some of the recent PLS research in 5G and 6G technologies of wireless communication networks is provided.  相似文献   

12.
In this paper, we propose a novel broad coverage precoder design for three-dimensional (3D) massive multi-input multi-output (MIMO) equipped with huge uniform planar arrays (UPAs). The desired two-dimensional (2D) angle power spectrum is assumed to be separable. We use the per-antenna constant power constraint and the semi-unitary constraint which are widely used in the literature. For normal broad coverage precoder design, the dimension of the optimization space is the product of the number of antennas at the base station (BS) and the number of transmit streams. With the proposed method, the design of the high-dimensional precoding matrices is reduced to that of a set of low-dimensional orthonormal vectors, and of a pair of low-dimensional vectors. The dimensions of the vectors in the set and the pair are the number of antennas per column and per row of the UPA, respectively. We then use optimization methods to generate the set of orthonormal vectors and the pair of vectors, respectively. Finally, simulation results show that the proposed broad coverage precoding matrices achieve nearly the same performance as the normal broad coverage precoder with much lower computational complexity.  相似文献   

13.
Large-scale Multiple-Input Multiple Output (MIMO) is the key technology of 5G communication. However, dealing with physical channels is a complex process. Machine learning techniques have not been utilized commercially because of the limited learning capabilities of traditional machine learning algorithms. We design a deep learning hybrid precoding scheme based on the attention mechanism. The method mainly includes channel modeling and deep learning encoding two modules. The channel modeling module mainly describes the problem formally, which is convenient for the subsequent method design and processing. The model design module introduces the design framework, details, and main training process of the model. We utilize the attention layer to extract the eigenvalues of the interference between multiple users through the output attention distribution matrix. Then, according to the characteristics of inter-user interference, the loss minimization function is used to study the optimal precoder to achieve the maximum reachable rate of the system. Under the same condition, we compare our proposed method with the traditional unsupervised learning-based hybrid precoding algorithm, the TTD-based (True-Time-Delay, TTD) phase correction hybrid precoding algorithm, and the deep learning-based method. Additionally, we verify the role of attention mechanism in the model. Extensive simulation results demonstrate the effectiveness of the proposed method. The results of this research prove that deep learning technology can play a driving role in the encoding and processing of MIMO with its unique feature extraction and modeling capabilities. In addition, this research also provides a good reference for the application of deep learning in MIMO data processing problems.  相似文献   

14.
Optical code division multiple access (OCDMA) can enhance the physical-layer security performance of optical fiber communication systems. In asynchronous coherent time-spreading OCDMA employing m sequence and Gold code, the reliability, capacity and physical-layer security of the system will degrade due to multiple access interference and beat noise. In order to enhance the physical-layer security and reliability of coherent OCDMA systems, a quasi-synchronous coherent time-spreading OCDMA wiretap channel is proposed in this paper. The influences of the extraction location, the extraction ratio, the number of active users on the physical-layer security are analyzed quantitatively. System performances are characterized by bit error rate, secrecy capacity as well as security leakage factor. The numerical results prove that the proposed scheme can improve the physical-layer security and reliability simultaneously.  相似文献   

15.
Inspired by the promising potential of re-configurable intelligent surface (RIS)-aided transmission in achieving the vision of 6th Generation (6G) network, we analyze the security model for a vehicular-to-infrastructure (V2I) network by considering multiple RISs (M-RIS) on buildings to act as passive relays at fixed distances from a source. In addition, multiple eavesdroppers are presented in the vicinity of the intended destination. Our aim is to enhance the secrecy capacity (SC) and to minimize secrecy outage probability (SOP) in presence of multiple eavesdroppers with the help of M-RIS in V2I communications. We propose a key-less physical layer security using beam-forming by exploiting M-RIS. The proposed approach assumes the concept of detecting eavesdroppers before the information can be transmitted via beam-forming by utilizing M-RIS. The results reveal that with consideration of M-RIS and beam-forming, the achievable SC and SOP performance is significantly improved while imposing minimum power consumption and fewer RIS reflectors.  相似文献   

16.
In this paper, we focus on minimizing energy consumption under the premise of ensuring the secure offloading of ground users. We used dual UAVs and intelligent reflective surfaces (IRS) to assist ground users in offloading tasks. Specifically, one UAV is responsible for collecting task data from ground users, and the other UAV is responsible for sending interference noise to counter potential eavesdroppers. The IRS can not only improve the transmission capacity of ground users, but also reduce the acceptance of eavesdroppers. The original problem is strong non-convex, so we consider using the block coordinate descent method. For the proposed sub-problems, we use Lagrangian duality and first-order Taylor expansion to obtain the results, and finally achieve system design through alternate optimization. The simulation results show that our proposed scheme is significantly better than other existing schemes.  相似文献   

17.
In order to transmit secure messages, a quantum secure direct communication protocol based on a five-particle cluster state and classical XOR operation is presented. The five-particle cluster state is used to detect eavesdroppers, and the classical XOR operation serving as a one-time-pad is used to ensure the security of the protocol. In the security analysis, the entropy theory method is introduced, and three detection strategies are compared quantitatively by using the constraint between the information that the eavesdroppers can obtain and the interference introduced. If the eavesdroppers intend to obtain all the information, the detection rate of the original ping-pong protocol is 50%; the second protocol, using two particles of the Einstein-Podolsky-Rosen pair as detection particles, is also 50%; while the presented protocol is 89%. Finally, the security of the proposed protocol is discussed, and the analysis results indicate that the protocol in this paper is more secure than the other two.  相似文献   

18.
Secure transmission in wireless networks is a big critical issue due to the broadcast nature of the wireless propagation environment. In this paper, the physical layer security performance in a mixed radio frequency (RF)/free space optical (FSO) system under multiple eavesdroppers is investigated. The RF links and FSO link within the system are assumed to respectively undergo Nakagami-m and Gamma–Gamma fading distributions. The two practical eavesdroppers scenarios considered includes: Colluding and Non-colluding in which their channel state information is unavailable at the source. The closed-form expressions for the lower bound security outage probability and the strictly positive secrecy capacity under both scenarios are derived by utilizing the system end-to-end cumulative distribution function and eavesdroppers’ probability density function. The results show that the increase in the number of eavesdroppers under both scenarios profoundly degrades the system secrecy performance. Moreover, it is demonstrated that both the atmospheric turbulence and pointing errors affect the concerned system secrecy and the impact of RF fading parameters is also presented. The accuracy of the numerical results obtained is validated by Montel-Carol simulations.  相似文献   

19.
In MIMO radar with widely separated antennas, the antennas are spaced far from each other and the target is seen from different angles. In this type of radars, each receiver collects all transmit signals and transmits them to the central processor unit. Power allocation is an important part of military operations. Therefore, it is a primary factor that requires to be taken into account in the designing of target tracking problems in MIMO radar. In fact, the power allocation finds an optimum strategy to allot power to transmit antennas with the goal of minimizing the target tracking errors under specified transmit power constraints. In this paper, the performance of power allocation for target tracking in MIMO radar with widely separated antennas is investigated. For this purpose, first, a MIMO radar with distributed antennas is configured and a target motion model using the constant velocity (CV) method is modeled. Then Joint Cramer Rao bound (CRB) for target parameters (joint target position and velocity) estimation error is computed. This is applied as a power allocation problem objective function. Because a complex Gaussian model is considered for target radar cross-section (RCS), this function becomes complicated. Due to the nonlinearity of this objective function, the proposed power allocation problem is nonconvex. Therefore, a particle swarm optimization (PSO) -based power allocation algorithm is proposed to solve it. In simulation experiments, the performance of the proposed algorithm in different conditions such as a different number of antennas and antenna geometry configurations is evaluated. Results prove the validity of the proposed algorithm.  相似文献   

20.
Massive multiple input multiple output (MIMO), also known as a very large-scale MIMO, is an emerging technology in wireless communications that increases capacity compared to MIMO systems. The massive MIMO communication technique is currently forming a major part of ongoing research. The main issue for massive MIMO improvements depends on the number of transmitting antennas to increase the data rate and minimize bit error rate (BER). To enhance the data rate and BER, new coding and modulation techniques are required. In this paper, a generalized spatial modulation (GSM) with antenna grouping space time coding technique (STC) is proposed. The proposed GSM-STC technique is based on space time coding of two successive GSM-modulated data symbols on two subgroups of antennas to improve data rate and to minimize BER. Moreover, the proposed GSM-STC system can offer spatial diversity gains and can also increase the reliability of the wireless channel by providing replicas of the received signal. The simulation results show that GSM-STC achieves better performance compared to conventional GSM techniques in terms of data rate and BER, leading to good potential for massive MIMO by using subgroups of antennas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号