首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Solvothermal reaction of 5,5′-(pyridine-2,6-diylbis(oxy))diisophthalic acid (H4L) with europium(III) or terbium(III) nitrates in acetonitrile-water (1 : 1) at 120 °C gave rise to isostructural 2D coordination polymers, [Ln(HL)(H2O)3] ( NIIC-1-Eu and NIIC-1-Tb ), the layers of which are composed by eight-coordinated lanthanide(III) ions interconnected by triply deprotonated ligands HL3−. The layers are packed in the crystal without any specific intermolecular interactions between them, allowing the facile preparation of stable water suspensions, in which NIIC-1-Tb exhibited top-performing sensing properties through luminescence quenching effect with exceptionally low detection limits towards Fe3+ (LOD 8.62 nM), ofloxacin (OFX) antibiotic (LOD 3.91 nM) and cotton phytotoxicant gossypol (LOD 2.27 nM). In addition to low detection limit and high selectivity, NIIC-1-Tb features fast sensing response (within 60–90 seconds), making it superior to other MOF-based sensors for metal cations and organic toxicants. The photoluminescence quantum yield of NIIC-1-Tb was 93 %, one of the highest among lanthanide MOFs. Mixed-metal coordination polymers NIIC-1-EuxTb1−x demonstrated efficient photoluminescence, the color of which could be modulated by the excitation wavelength and time delay for emission monitoring (within 1 millisecond). Furthermore, an original 2D QR-coding scheme was designed for anti-counterfeiting labeling of goods based on unique and tunable emission spectra of NIIC-1-Ln coordination polymers.  相似文献   

2.
This work focuses on the investigation of the liquid crystalline behavior and luminescence properties of the lanthanide complexes of Eu(III), Sm(III) and Tb(III) with N-biphenyl-alkylated-4-pyridone ligands. The organic ligands having a biphenyl group attached via a long flexible spacer with either 9 or 10 carbon atoms were synthesized by the reaction between 4-hydroxypyridine and the corresponding bromide compounds. The chemical structures of the organic and lanthanide complexes were assigned based on elemental analysis, single-crystal X-ray diffraction, 1H, 13C NMR and IR spectroscopies, and thermogravimetric analysis (TGA). The X-ray diffraction analysis of a parent compound shows that the lanthanide ions are surrounded by three monodentate pyridone ligands and three bidentate nitrate ions, giving a 9-coordinate environment. The mesogenic behavior and the type of liquid crystalline phases exhibited by the new complexes were analyzed by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM), and powder X-ray diffraction (XRD) studies. Only the lanthanide complexes with longer spacer (10) display a monotropic SmA phase, typically on a short thermal range (less than 10 °C). The complexes with shorter flexible chains (9) show no liquid crystalline properties with melting temperatures lower than their analogs with longer spacers. The emission spectra recorded in solid state at room temperatures show typical emission bands for each lanthanide ion employed (Eu(III), Tb(III) and Sm(III)).  相似文献   

3.
Herein, the synthesis and characterization of the first family of multipodal ligands with a Tröger's base framework designed for the preparation of luminescent lanthanide(III) complexes are reported. Eight ligands were designed and synthesized using different strategies, including alkylation reactions, amide couplings, and Ugi multicomponent reactions. All the ligands bear carboxylate groups for the coordination of the lanthanide(III) ions, with the lanthanide(III)-sensitizing units consisting of the Tröger's base framework itself or attached benzamides. Upon irradiation of the chromophoric ligands, green terbium(III) emission was efficiently generated, whereas europium(III) emission was negligible. The geometry and substitution pattern of the ligands allow control of the stoichiometry of the species formed and the TbIII luminescence sensitization efficiency, showing that para-substitution patterns are more efficient than meta substitution for the formation of coordination compounds with lower TbIII/ligand ratio. We propose that the species formed are self-assembled 2:2 or 2:4 metallosupramolecular structures.  相似文献   

4.
Two calix[4]azacrowns, capped with two aminopolyamide bridges, were used as ligands for the complexation of lanthanide ions [Eu(III), Tb(III), Nd(III), Er(III), La(III)]. The formation of 1:2 and 1:1 complexes was observed, and stability constants, determined by UV absorption and fluorescence spectroscopy, were found to be generally on the order of log beta(11) approximately 5-6 and log beta(12) approximately 10. The structural changes of the ligands upon La(III) complexation were probed by 1H NMR spectroscopy. The two ligands were observed to have opposite fluorescence behaviors, namely, fluorescence enhancement (via blocking of photoinduced electron transfer from amine groups) or quenching (via lanthanide-chromophore interactions) upon metal ion complexation. Long-lived lanthanide luminescence was sensitized by excitation in the pi,pi band of the aromatic moieties of the ligands. The direct involvement of the antenna triplet state was demonstrated via quenching of the ligand phosphorescence by Tb(III). Generally, Eu(III) luminescence was weak (Phi(lum) 相似文献   

5.
The promising ligand candidates for the energy transfer luminescence measurements of lanthanide (Ln) chelates on aqueous matrices are first proposed. The ligands are; 2[(2-amino-5-methyl-phenoxy)methyl]-6-methoxy-8-aminoquinoline-N,N,N',N'-tetraacetate (Quin 2), 1,2-bis(2-amino-phenoxy)ethane-N,N,N',N'-tetraacetate (BAPTA), and 1,2-bis(2-amino-5-fluoro-phenoxy)ethane-N,N,N',N'-tetraacetate (F-BAPTA). The Ln-chelates of these aromatic polyaminocarboxylates show the sensitized emission which results from efficient ligand-centered light absorption, and the interesting selectivity is seen; BAPTA and F-BAPTA form the luminescent chelates only with Tb(III) and Dy(III) ions, whereas the emission from Sm(III) and Eu(III) ions is greatly sensitized with Quin 2. The sufficient emission intensity can be obtained even in slightly alkaline aqueous solutions without any addition of surfactants or organic solvents. These octadentate ligands are fairly capable of shielding central Ln ions from quenching by surrounding water molecules. The luminescence enhancement factors are 1600 for Tb(III) ion with BAPTA (em.544 nm) and 1380 for Eu(III) ion with Quin 2 (em. 615 nm), respectively, being relative to their aqueous chloride solutions.  相似文献   

6.
Wang R  Song D  Seward C  Tao Y  Wang S 《Inorganic chemistry》2002,41(20):5187-5192
Two new luminescent lanthanide complexes Ln(2)(acac-azain)(4)(mu-acac-azain)(2) [acac-azain = 1-(N-7-azaindolyl)-1,3-butanedionato, Ln = Tb(III), 1, Y(III), 2] have been synthesized and structurally characterized. These two dinuclear complexes are isostructural with the two lanthanide ions being bridged by two acac-azain ligands. Each of the two metal ions is further chelated by four oxygen atoms from two acac-azain ligands, resulting in a coordination number eight for each metal ion. 1 displays characteristic Tb(III) emission bands while 2 displays weak blue luminescence attributable to the ligand. Single-layer and double-layer electroluminescent devices for compound 1 were fabricated, where compound 1 doped PVK layer functions as both the emitting layer and the hole transport layer and PBD functions as an electron transport layer (in the double-layer device), demonstrating that compound 1 is a promising green emitter in electroluminescent devices.  相似文献   

7.
Several trivalent lanthanide ions are known to exhibit excellent luminescence characteristics when they are coordinated with appropriate organic ligands. Various analytical methods have been developed to determine lanthanide ions or organic compounds by taking advantage of these luminescence characteristics. The luminescence enhancement of the lanthanide ions by complexation with organic ligands has been explained on the basis of a ligand to metal energy transfer process.  相似文献   

8.
Introduction Recently, the coordination polymers based on dicar-boxylic acid have been studied extensively for their importance as promising materials.1-7 So the rational design and synthesis of novel coordination polymers with useful functions attract considerable attention. As well known, the design of extended structure with po-tential applications can be realized by starting with connecting ligands capable of binding metal centers strongly and predictably to afford the structures with expe…  相似文献   

9.
The luminescence and circularly polarized luminescence (CPL) spectra of M(I)[Eu((+)-hfbc)(4)] show a similar behavior to the exciton CD in the intraligand π-π* transitions when the alkali metal ions and solvents are manipulated. There is a difference in susceptibility in solvation toward the alkali metal ions but not toward the Eu(III) ion, as in the case of axially symmetric DOTA-type compounds. The remarkable CPL in the 4f-4f transitions provide much more information on the stereospecific formation of chiral Eu(III) complexes, since CPL spectroscopy is limited to luminescent species and reflects selectively toward helicity of the local structural environment around the lanthanide(III). While in comparison, exciton CD reveals the chiral structural information from the helical arrangement of the four bladed chelates. Of special importance, the observation of the highest CPL activities measured to date for lanthanide(III)-containing compounds (i.e., Eu and Sm) in solution supports the theory that the chirality of lanthanide(III) in the excited state corresponds to that in the ground state, which was derived from the exciton CD.  相似文献   

10.
Optical multiplexing based on luminescent materials with tunable color/lifetime has potential applications in information storage and security. However, the available tunable luminescent materials reported so far still suffer from several drawbacks of low efficiency or poor stability, thus restraining their further applications. Herein, we demonstrate a strategy to develop efficient and stable lanthanide coordination polymers (LCPs) with tunable luminescence as a new option for optical multiplexing. Their multicolor emission from green to red and naked-eye-sensitive green emission with tunable lifetime (from ca. 300 to ca. 600 μs) can be controlled by host differential sensitization and energy transfer between lanthanide ions. The quantum efficiencies of developed samples range from around 20 % to 46 % and the luminescence intensity/lifetime appear quite stable in polar solvents up to ten weeks. Furthermore, with the aid of inkjet printing and concepts of luminescence lifetime imaging and time-gated imaging, we illustrate their promising applications of information storage and security in spatial and temporal domains.  相似文献   

11.
微孔镧系配位聚合物   总被引:1,自引:0,他引:1  
微孔配位聚合物与通常的微孔无机材料相比, 具有非常明显的优势. 而镧系离子特殊的光学和磁学性质, 更使得微孔镧系配位聚合物的研究成为热点. 本文简要地报道了微孔镧系配位聚合物的研究现状, 对一些微孔镧系配位聚合物的结构特点进行了描述, 讨论了影响微孔配位聚合物形成的主要因素. 一般来说, 线型配体往往能很好地将金属离子连接起来, 得到理想的微孔镧系配位聚合物; 选择合适的第二配体, 有利于构筑结构新颖的微孔镧系配位聚合物; 镧系收缩对能否形成微孔配位聚合物的影响并不明显, 只是轻稀土离子往往倾向于多结合一些小分子配体来满足更高的配位数.  相似文献   

12.
Works concerning the application of nonradiative transfer of electronic excitation energy to investigation into nanostructures of lanthanide complexes in aqueous solutions are surveyed. The effect of the formation of nanosized structures on the quenching of energy donors Ln(III) ions by acceptor ions in concentrated chloride solutions of structuring ions (Li(I), Ca(II)) was discussed. The columinescence phenomenon observed in aqueous solutions of lanthanide chelates was considered. It was shown that the enhancement of luminescence Eu(III) and Tb(III) complexes in water in the presence of excess β-diketones with an admixture of other Ln(III) ions, primarily Gd(III), (columinescence) is due to sensitization via energy transfer over triplet levels of the ligands in the nanostructures formed under these conditions and to the weakening of deactivation of excited luminescent ions by the formation of nanostructures. The influence of the solution preparation procedure on the formation of nanostructures of chelates with different lanthanide ions was revealed, which manifest itself as a variation in the enhancement and quenching of luminescence in the presence of ions from the cerium and yttrium subgroups. Possible applications of the columinescence phenomenon to chemical and medical analysis are briefly discussed.  相似文献   

13.
Lanthanide metal-organic frameworks(Ln-MOFs), which is composed of organic bridging ligands and Ln3+ions/clusters, is an important component of luminescent MOFs. Compared with transition metal ions,lanthanide ions have a higher coordination number and abundant coordination geometry. Moreover, LnMOFs have special characteristics such as good porosity, topological diversity, high surface area and highly adjustable structure. The energy transfer(ET) process in Ln-MOFs could be easily affected by th...  相似文献   

14.
Reaction in water between rare earth ions (Ln = Y, La-Tm, except Pm) and the sodium salt of terephthalic acid leads to a family of lanthanide-based coordination polymers of general formula [Ln2(C8H4O4)3(H2O)4] n with Ln = La-Tm or Y. The isostructurality of the compounds with the previously reported Tb-containing polymer is ascertained on the basis of their X-ray powder diffraction diagrams. The coordination water molecules can be reversibly removed without destroying the crystal structure for compounds involving one of the lighter lanthanide ions (La-Eu). For compounds involving one of the heavier lanthanide ions (Tb-Tm) or yttrium, a structural change occurs during the drying process. X-ray diffraction data show this new anhydrous phase corresponding to the linking of pairs of Er(III) ions through mu-carboxylate bridges. Porosity profiles calculated for the anhydrous phases of Tb(III) and Er(III) show the presence of channels with very small sections. The luminescent properties of all the compounds have been recorded and the two most luminescent polymers, namely, the europium- and the terbium-containing ones, have been studied in more detail. Tb(III)-containing compounds display large quantum yields, up to 43%. Polyvinylpyrrolidone nanoparticles doped with [Ln2(C8H4O4)3(H2O)4] n (Ln = Eu, Tb, Er) have also been synthesized and characterized. The encapsulation of the coordination polymers results in somewhat reduced luminescence intensities and lifetime, but the nanoparticles can be dispersed in water and remain unchanged in this medium for more than 20 h.  相似文献   

15.
Four lanthanide coordination polymers with benzophenone‐4,4′‐dicarboxylic acid (H2bpndc) and 1,10‐phenanthroline (phen), [Ln2(bpndc)3(phen)] (Ln=La (1), Pr (2) and Tb (3)), [Yb(bpndc)15(phen)].05H2O (4) were obtained through solvothermal synthesis. The crystallographic data show that 1, 2, and 3 are isostructural, the Ln(III) ions in 1, 2 and 3 are all eight‐ and ten‐coordinated, respectively, and thus the Ln(III) ions are connected by bpndc ligands, resulting in an interpenetrating 3D structure. While in 4, the Yb(III) ions are eight‐coordinated and connected by bpndc ligands into a 3D structure with 1D rhombic channels, which result from the effect of lanthanide contraction from La(III) to Yb(III) ions, and the bpndc ligands in 1, 2, 3, and 4 display three types of coordination modes.  相似文献   

16.
This work focuses on the synthesis of a series of chemically bonded lanthanide/inorganic/organic hybrid materials (CE-15-Si-Ln, CE-16-Si-Ln, CE-18-Si-Ln) containing a novel aza-crown ether organic component. The materials show red emission (Ln = Eu), green emission (Ln = Tb) and near-infrared (NIR) luminescence (Ln = Nd). Three functional molecular precursors (denoted as CE-15-Si, CE-16-Si, CE-18-Si) have been synthesized with two or three N-substituted pendant arms containing chelating groups which can not only fulfill the high coordination numbers of Ln(3+) ions but also form an inorganic Si-O-Si network with tetraethoxysilane (TEOS). The resulting amorphous materials exhibit regular uniform microstructures for the organic and the inorganic components which are covalently linked through Si-O bonds via a self-assembly process. These hybrids present strong luminescent intensities in red, green and NIR ranges by embedding selected Ln(3+) ions into the hybrid system, which may lead to potential applications in organic electroluminescence displays, light emitting devices, functional membranes or chemical/biomedical sensors.  相似文献   

17.
稀土发光配合物材料基于其独特的4f-4f电子跃迁表现出优异的发光性能,特别是铕和铽配合物材料,发光波长在可见光区范围内,发射谱带狭窄且尖锐(半峰宽通常小于10 nm),非常适合应用于显示设备和传感装置.同时,具备温度依赖发光性能的铕和铽配合物能够实现高灵敏度、高效的温度传感过程,使其有望用于流体动力学、航空航天、环境工...  相似文献   

18.
Co-crystallization of K2[Ru(bipy)(CN)4] with lanthanide(III) salts (Ln = Pr, Nd, Gd, Er, Yb) from aqueous solution affords coordination oligomers and networks in which the [Ru(bipy)(CN)4]2- unit is connected to the lanthanide cation via Ru-CN-Ln bridges. The complexes fall into two structural types: [{Ru(bipy)(CN)4}2{Ln(H2O)m}{K(H2O)n}] x xH2O (Ln = Pr, Er, Yb; m = 7, 6, 6, respectively), in which two [Ru(bipy)(CN)4]2- units are connected to a single lanthanide ion by single cyanide bridges to give discrete trinuclear fragments, and [{Ru(bipy)(CN)4}3{Ln(H2O)4}2] x xH2O (Ln = Nd, Gd), which contain two-dimensional sheets of interconnected, cyanide-bridged Ru2Ln2 squares. In the Ru-Gd system, the [Ru(bipy)(CN)4]2- unit shows the characteristic intense (3)metal-to-ligand charge transfer luminescence at 580 nm with tau = 550 ns; with the other lanthanides, the intensity and lifetime of this luminescence are diminished because of a Ru --> Ln photoinduced energy transfer to low-lying emissive states of the lanthanide ions, resulting in sensitized near-infrared luminescence in every case. From the degree of quenching of the Ru-based emission, Ru --> Ln energy-transfer rates can be estimated, which are in the order Yb (k(EnT) approximately 3 x 10(6) sec(-1), the slowest energy transfer) < Er < Pr < Nd (k(EnT) approximately 2 x 10(8) sec(-1), the fastest energy transfer). This order may be rationalized on the basis of the availability of excited f-f levels on the lanthanide ions at energies that overlap with the Ru-based emission spectrum. In every case, the lifetime of the lanthanide-based luminescence is short (tens/hundreds of nanoseconds, instead of the more usual microseconds), even when the water ligands on the lanthanide ions are replaced by D2O to eliminate the quenching effects of OH oscillators; we tentatively ascribe this quenching effect to the cyanide ligands.  相似文献   

19.
The number of oxygen-based ligands coordinated to lanthanide ions influences the physical and chemical properties of lanthanide complexes, making this number important to study. We used peak shifts in 17O-NMR spectroscopy to determine the number of individual nonhydroxyl-oxygen-based ligands coordinated to Dy3+. Oxygen-containing organic solvents were used as models to represent oxygen-based ligands to explore the scope of the technique because they contain a range of functional groups that have different electron-donating abilities and steric bulk. The measured coordination numbers of dimethylformamide, dimethyl sulfoxide, acetone, diethyl ether, tetrahydrofuran, di-isopropyl ketone, and hexamethyl acetone were consistent with reasonable values, indicating that 17O-NMR spectroscopy is a useful technique to study the coordination chemistry of nonhydroxyl ligands to lanthanide ions in solution.  相似文献   

20.
Increased interest in the emission properties of lanthanide(III) (Eu and Tb) complexes containing ultraviolet and visible sensitizers is being driven by the desire to produce efficient and selective luminescent probes of biological structure. Of special interest are cryptates and other macrocyclic chelating ligands that efficiently encapsulate the lanthanide ions. These species also form relatively stable systems and in some cases are well protected from penetration of the first coordination sphere by solvent molecules and counterions. This work describes the X-ray structure and various spectroscopic measurements on a europium cryptate containing 3,3'-biisoquinoline-2,2'-dioxide (biqO2). This cryptate has been previously recognized for special stability and luminescence efficiency. The compound, (Eu:biqO2.2.2)(CF3SO3)3.CH3CN.H2O, forms rhombic crystals with the space group Pbca. Absorption, emission, and excitation spectra at 293, 77, and 4 K as well as luminescence decay time measurements are used to characterize the solid state and solutions. The ligand-to-metal energy-transfer mechanism and thermally activated back-energy-transfer processes are analyzed and compared to previously published results on related Eu(III) cryptate systems. Preliminary results on the use of high liquid pressure to perturb ligand singlet and triplet states and, as a consequence, probe the ligand-metal orbital interactions are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号