首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physica B+C》1988,147(2-3):297-304
We have investigated the drain current-drain voltage characteristics and the spectral noise intensity of the drain current of (111) n-channel MOSFET's at T = 4.2 K. At T = 4.2 K the drain current-drain voltage characteristics showed a hysteresis which was not observed at T =77 K and at room temperature. A qualitative explanation of this hysteresis is given in terms of electron transfer from high mobility valleys to low mobility valleys due to hot electrons. In the spectra of the current noise three contributions could be distinguished: 1/ƒ-noise, white noise and generation-recombination noise. The 1/ƒ-noise is interpreted as number fluctuations noise. The effective trap density was found to be 2.3 × 1022 m-3. At low drain voltages the white noise can be interpreted as diffusion noise. At higher drain voltages extra noise is observed over and above diffusion noise. This extra noise may be inter-valley noise. The generation-recombination noise was very sensitive to the gate voltage. A tentative explanation can be given if it is assumed that the traps which cause this noise have a non-uniform energy distribution.  相似文献   

2.
Zheng-Lin Jia 《Physica A》2008,387(25):6247-6251
The effects of time delay on the transient properties of a time-delayed metastable system subjected to cross-correlated noises are studied by means of a stochastic simulation method. It is found that: (i) Both additive noise and multiplicative noise can produce the noise enhanced stability (NES) effect; (ii) The time delay induces critical behavior on the NES, i.e., there is a critical value of the delay time τc1≈2.2, above which the time delay increases the stability of the system enhanced by the additive noise, and below which the NES effect induced by the additive noise disappears; (iii) There exists another critical value of the delay time τc2≈3.0, above which the time delay increases the stability of the system enhanced by the multiplicative noise and below which the time delay decreases it.  相似文献   

3.
《Physica B+C》1988,147(2-3):291-296
The spectral noise intensity of the drain current of an n-channel (100) Si-MOSFET in strong inversion was measured as a function of drain current and gate voltage at T = 4.2 K. In addition to flicker noise and white noise it was possible to distinguish a Lorentzian, which was due to generation-recombination noise. Since, at T = 4.2 K, the 2D-electron gas in the MOSFET in strong inversion is degenerate this generation-recombination noise must be caused by traps in the conduction band. The measured noise relaxation time was found to depend on drain current.Our results can be interpreted in terms of a generation-recombination process in which the generation is partly field-induced. Agreement between theory and experiment is within the experimental error, both for the way in which the inverse noise relaxation time depends on drain current and the way in which the ratio of the low frequency plateau of the spectral noise intensity to the noise relaxation time depends on the product of drain current and drain voltage. Measurements of the ratio of the low-frequency plateau of the spectral noise intensity to the relaxation time versus gate voltage at T = 4.2 K we used to construct an energy spectrum of the density of traps in the conduction band. A maximum is observed at about 14meV above the bottom of the conduction band.  相似文献   

4.
The effects of time delay on stochastic resonance (SR) in a bistable system with time delay, correlated noises and periodic signal are studied by using the theory of signal-to-noise ratio (SNR). The expression of the SNR is derived under the adiabatic limit and the small delay time approximation. It is found that: (i) For the case of no correlations between multiplicative and additive noise, the delay time τ can enhance the SNR as a function of the multiplicative noise intensity α and it can restrain the SNR as a function of the additive noise intensity D; (ii) For the case of correlations between multiplicative and additive noise, τ can induce a minimum and maximum in curve of the SNR as a function of α, and can intensively restrain the SNR as a function of the D and there is a critical value of delay tim τ c =0.1 in the height of the SNR peak with change of τ, i.e., when τ takes value blow τ c , the τ boosts up the SNR as a function of the strength λ of correlations between multiplicative and additive noise, however, when τ takes value above τ c , the τ restrains that.  相似文献   

5.
The voltage response of a Josephson junction to a pulsed terahertz current is evaluated in the limit of a negligible junction capacitance (overdamped limit). The time-dependent superconductor phase difference across the junction is calculated in the framework of the standard resistive shunted junction model by using a perturbative method. The pulsed current bias affects the time average value of the voltage across the junction and current steps are induced in the current–voltage characteristics for voltage values depending on the pulse repetition rate. The current step height is proportional to the square of the pulse time width (τ) to the period (T) ratio. A fast response detector for pulsed Terahertz radiation is proposed, with an expected responsivity of the order of 0.1 V/W and an equivalent noise power of about 3 × 10?10 W/Hz1/2.  相似文献   

6.
《Current Applied Physics》2010,10(5):1306-1308
Low-voltage-drive ZnO thin-film transistors (TFTs) with room-temperature radio frequency magnetron sputtering SiO2 as the gate insulator were fabricated successfully on the glass substrate. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 4.2 V, a field effect mobility of 11.2 cm2/V s, an on/off ratio of 3.1 × 106 and a subthreshold swing of 0.61 V/dec. The drain current can reach to 1 mA while the gate voltage is only of 12 V and drain voltage of 8 V. The C–V characteristics of a MOS capacitor with the structure of ITO/SiO2/ZnO/Al was investigated. The carrier concentration ND in the ZnO active layer was determined, the calculated ND is 1.81 × 1016 cm−3, which is the typical value of undoped ZnO film used as the channel layer for ZnO-TFT devices. The experiment results show that SiO2 film is a promising insulator for the low voltage and high drive capability oxide TFTs.  相似文献   

7.
We report the realization of an AlGaN/GaN HEMT on silicon (001) substrate with noticeably better transport and electrical characteristics than previously reported. The heterostructure has been grown by molecular beam epitaxy. The 2D electron gas formed at the AlGaN/GaN interface exhibits a sheet carrier density of 8×1012 cm−2 and a Hall mobility of 1800 cm2/V s at room temperature. High electron mobility transistors with a gate length of 4 μm have been processed and DC characteristics have been achieved. A maximum drain current of more than 500 mA/mm and a transconductance gm of 120 mS/mm have been obtained. These results are promising and open the way for making efficient AlGaN/GaN HEMT devices on Si(001).  相似文献   

8.
The performances of InGaP/InGaAs camel-gate n- and p-channel pseudomorphic modulation-doped field effect transistors (MODFETs) are demonstrated and compared. In the n-channel (p-channel) device, an extremely high gate turn-on voltage of 1.7 (2.0) V is measured due to the pn depletion in the camel-like gate region and the presence of a large conduction (valence) band discontinuity at the InGaP/InGaAs heterostructure. In addition, a maximum drain saturation current of 425 mA/mm (−345 mA/mm) and a maximum transconductance of 85 mS/mm (63 mS/mm) are obtained for the n-channel (p-channel) device. These excellent characteristics indicate that the devices that are studied are promising for signal amplifiers and inverter circuit applications.  相似文献   

9.
The effects of surface modification on electrical characteristics in bulk, grain boundary and interface (electrolyte/electrode) of BaCe0.9Y0.1O3-δ were investigated. The surface modification was performed by means of two processes: specimen was firstly irradiated by 10 keV Ar+ ion with dose of 1 × 1018 ions/cm2 and then exposed to air. The modified surface was investigated by elastic recoil detection analysis (ERDA) for quantitative analysis of hydrogen concentration on the surface and alternating current (AC) and direct current (DC) conductivity measurements, respectively. The ERDA results showed that hydrogen concentration and reaction rate on the modified surface increased. The increase of hydrogen concentration was explained in terms of the increase of proton due to interaction between oxygen vacancy formed by modification and H2O. In AC and DC electrical conductivity measurements, it concluded that the proton and electronic carrier generated on the surface by modification attributed to the increase of bulk, grain boundary and interface conductivity.  相似文献   

10.
AlGaN/GaN high electron mobility transistor (HEMT) based hydrogen sensors incorporating platinum nanonetworks in the gate region were demonstrated. Pt nanonetworks with 2–3 nm diameter were synthesized by a simple and low-cost solution phase method, and applied to the gate electrode of transistor sensor. The HEMT with physically and electrically connected Pt nanonetwork gate showed good pinch-off and modulation of drain current characteristics. Compared to conventional Pt thin film AlGaN/GaN HEMT sensor, the Pt nanonetwork sensor has dramatically improved current response to hydrogen. Relative current change of Pt nanonetwork gated sensor in 500 ppm H2 balanced with Air ambient was 3.3 × 106% at VGS of ?3.3 V, while 2.5 × 102% at VGS of ?2.9 V for Pt film. This results from large increase in channel conductance induced by huge catalytic surface area of nanostructured Pt networks.  相似文献   

11.
We report on the reliability of Inx Al1–xN/AlN/GaN‐based heterostructure field‐effect transistors (HFETs) fabricated on five different wafers with varying indium compositions (0.12 ≤ x ≤ 0.20) encompassing the tensile/compressive strain fields. All of the tested devices underwent high field on‐state stress at 20 V DC drain bias and zero gate bias for five hours. We monitored the drain current and low‐frequency noise (LFN) a priori and a posteriori the stress treatment to quantify device degradation. HFETs suffering tensile strain showed remarkably large degradation which manifested itself with up to 25 dB increase in noise power and up to 72% loss of drain current after stress. On the other hand, devices fabricated on compressively strained structures remained intact after stress, but they had about 30 dB higher pre‐stress noise‐power levels and about 50% lower drain‐current densities to begin with. The results show that the nearly lattice‐matched In0.17Al0.83N barrier exhibited very low degradation along with current density remaining high compared with the devices having barriers with lower or higher indium content. Our results suggest that the nearly‐lattice‐matched InAlN can be a good candidate for devices due to its relatively better reliability while maintaining a high current density. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
In this paper, a high performance AlGaN/AlN/GaN/SiC High Electron Mobility Transistor (HEMT) with the multiple indented channel (MIC-HEMT) is proposed. The main focus of the proposed structure is based on reduction of the space around the gate, stop of the spread of the depletion region around the source–drain, and decrement of the thickness of the channel between the gate and drain. Therefore, the breakdown voltage increases, meanwhile the elimination of the gate depletion layer extension to source/drain decreases the gate–source and gate–drain capacitances. The optimized results reveal that the breakdown voltage and the drain saturation current increase about 178% and 46% compared with a conventional HEMT (C-HEMT), respectively. Therefore, the maximum output power density is improved by factor 4.1 in comparison with conventional one. Also, the cut-off frequency of 25.2 GHz and the maximum oscillation frequency of 92.1 GHz for the MIC-HEMT are obtained compared to 13 GHz and 43 GHz for that of the C-HEMT and the minimum figure noise decreased consequently of reducing the gate–drain and gate–source capacitances by about 42% and 40%, respectively. The proposed MIC-HEMT shows a maximum stable gain (MSG) exceeding 24.1 dB at 3.1 GHz which the greatest gain is yet reported for HEMTs, showing the potential of this device for high power RF applications.  相似文献   

13.
We have developed a silicide-mediated crystallization (SMC) polycrystalline silicon (poly-Si) thin film transistor (TFT) with a gate overlapped lightly doped drain (GOLDD) structure. Applying a GOLDD structure to the SMC poly-Si TFT, the off-state leakage current of coplanar TFT is reduced, while the reduction of the on-state current is relatively small. The p-channel poly-Si TFT with a GOLDD structure exhibited a field effect mobility of 50 cm2/V s and an off-state leakage current of 3.8×10−11 A/μm at the drain voltage of −5 V and the gate voltage of 10 V.  相似文献   

14.
《Current Applied Physics》2015,15(7):780-783
In this study, we demonstrate the simulated subthreshold swing (SS) of silicon nanowire tunneling field-effect transistors (NWTFETs) by varying both the channel diameter from 10 nm to 40 nm and the gate coverage ratio from 30% to 100%. Our simulation work reveals that both a decrease in the channel diameter and an increase in the gate coverage ratio contribute to a reduction in the SS. Additionally, our work shows that the magnitude of the on-current depends linearly on the gate coverage ratio and that the drain current increases with a decrease in the channel diameter. Thus, an NWTFET with a channel diameter of 10 nm and a gate coverage ratio of 100% exhibits superior electrical characteristics over other silicon NWTFETs in that the NWTFET shows a point SS of 22.7 mV/dec, an average SS of 56.3 mV/dec, an on/off current ratio of ∼1013, and an on-current of ∼10−5 A/μm.  相似文献   

15.
The electron beam ion source (Kobe EBIS) has been developed to perform modification of surfaces using highly charged ions (HCIs) at the Kobe University, Japan. Recent study revealed that periodic intermission of electron beam improves charge state distribution of extracted ions. The period of intermission is in the order of 100 ms, and the width of beam-off time is 1 ms or less. This operational mode (pulse mode) makes it possible to produce Ar15+ to Ar17+ effectively, whereas the charge is limited less than 14+ under the ordinary operational mode with direct current (DC) electron beam. A spike of HCIs with a peak current in the order of nA is also observed at each moment of electron beam off. The measurement of the time evolution of Ar16+ intensity around the timing of mode change revealed that the intensity of extracted Ar16+ changes slowly after mode change with a time constant of few seconds.  相似文献   

16.
We report device linearity improvement and current enhancement in both a heterostructure FET (HFET) and a camel-gate FET (CAMFET) using InGaAs/GaAs high-low and GaAs high-medium-low doped channels, respectively. In an HFET, a low doped GaAs layer was employed to build an excellent Schottky contact. In a GaAs CAMFET, a low doped layer together withn+andp+layers formed a high-performance majority camel-diode gate. Both exhibit high effective potential barriers of >1.0 V and gate-to-drain breakdown voltages of >20.0 V (atIg=1.0 mA mm−1). A thin, high doped channel was used to enhance current drivability and to improve the transconductance linearity. A 2×100 μm2HFET had a peak transconductance of 230 mS mm−1and a current density greater than 800 mA mm−1. The device had a transconductance of more than 80 percent of the peak value over a wide drain current range of 200 to 800 mA mm−1. A 1.5×100 μm2CAMFET had a peak transconductance of 220 mS mm−1and a current density greater than 800 mA mm−1. Similarly, the device had a transconductance of more than 80 percent of the peak value over a wide drain current range of 160 to 800 mA mm−1. The improvement of device linearity and the enhancement of current density suggest that high-to-low doped-channel devices for both an HFET and a CAMFET are suitable for high-power large signal circuit applications.  相似文献   

17.
Hf–Sn–Zn–O (HTZO) thin films were prepared on SiO2/SiNx substrates at room temperature by the direct current (DC) magnetron sputtering of Hf-doped Sn–Zn–O targets. The characteristics of films with different amounts of Hf were analyzed. Amorphous HTZO films were obtained by increasing the Hf content, while polycrystalline films have not shown with Hf doping. With the proper Hf concentration in the HTZO films (∼2.0 atomic % Hf/(Hf + Sn + Zn + O)), HTZO films demonstrated good performance as an oxide semiconductor channel material in thin film transistors (TFTs) with a field effect mobility (μFE) of 10.9 cm2V−1 s−1, an on/off current ratio of 109, and a subthreshold voltage swing of 0.71 V/decade.  相似文献   

18.
Micromagnetic simulations were used to investigate the influence of patterned media geometry on the signal to noise ratio (SNR), adjacent track erasure and write margin for a target recording density of 1 Tb/in2. For an ideal patterned medium the readback noise was a maximum when the read head was directly over the dots and a minimum at the transitions. The SNR improved for smaller dots due to the larger dot separation. However, the ideal media with the highest SNR were also the most susceptible to dispersions of dot size and position. Low temperature simulations suggest that large write margins are available; however, at room temperature the write margin can be much reduced. Increasing the rise time of the write head had a deleterious effect on the write margin and the write margin was zero for rise times of more than 0.45 ns. Nevertheless, error-free writing at 1 Tb/in2 could be achieved using appropriate head geometries and material parameters.  相似文献   

19.
Metal-induced crystallization method is one of the favorable non-laser crystallization methods for thin-film transistors in large-area displays. However, it is necessary to reduce metal contamination in the film to lower leakage current for the device applications. A new two-step crystallization method, consisting of a nucleation step by AlCl3 vapor-induced crystallization and a grain growth step by a pulsed rapid thermal annealing, has been proposed to increase the grain size and reduce the residual metal contamination in crystallized poly-Si films. The grain size of the poly-Si film crystallized by the VIC + PRTA two-step crystallization process was as large as 70 μm. Furthermore, the Al concentration in the poly-Si film was reduced by two orders of magnitude from 1 × 1020 cm?3 by VIC only process to 1.4 × 1018 cm?3 by the two-step process. As a result, the minimum leakage current of poly-Si TFTs using the poly-Si film prepared by the two-step process was reduced from 1.9 × 10?10 A/μm to 2.8 × 10?11 A/μm at a drain voltage of 5 V, without carrier mobility degradation.  相似文献   

20.
In this paper, the first-passage time (FPT) of periodic potential system driven by correlated noise is discussed. One-dimensional non-Markovian process in the system is stochastically equivalent to two-dimensional Markovian process according to the statistical characteristics of noise. The 5 × 104 response tracks of the system is simulated by the fourth-order Runge-Kutta algorithm, and the FPT of the Brownian particle is recorded, then the mean first-passage time (MFPT) is calculated by averaging these values and the probability density function (PDF) of the FPT is simulated. Finally, the influence of the relevant parameters in the system on MFPT and the PDF of the FPT are discussed. Besides, it is found that resonance activation (RA) phenomenon appears in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号