首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work investigates performance of system throughput in intelligent reflecting surfaces (IRSs)-enabled phase cooperative non-orthogonal multiple access (NOMA) framework. By exploiting heterogeneous cognitive radio networks concept the aim is to maximize the sum rate of secondary users in the proposed phase cooperative downlink network configuration via optimization solutions. However, the optimization problem comes out to be NP-hard and precludes direct solution. Hence, an alternating optimization is applied at the primary network to solve the maximization problem by exploiting the transmit beamforming (BF) at the power station (PS) and phase shift optimization at the IRS. Later, sum rate maximization for secondary network is performed by utilizing phase shifts of primary network via phase cooperation. In order to find global optimal solutions for active beamformers at both PSs, a branch-reduce-and-bound (BRnB) method is used whereas, passive phase shift optimization at the primary PS is performed via a simple iterative solution, i.e., the element-wise block coordinate descent method. For the proposed framework, Monte-Carlo simulations are performed where the optimality of the global solution is compared with heuristic BF methods including minimum-mean-square-error/regularized zero-forcing-beamforming (ZFBF) and ZFBF. The BRnB algorithm sets an upper performance bound by improving the sum rate of users in comparison with the conventional heuristic BF schemes. This work signifies the utilization of phase cooperation in IRS-assisted NOMA networks for a multi-user environment.  相似文献   

2.
In this paper, we consider a non-orthogonal multiple access (NOMA) system assisted by intelligent reflecting surface (IRS). As an emerging technology that has received widespread attention, IRS can reconfigure the wireless channel environment by adjusting the relationship between the incident angle and the exit angle, thereby improving system performance. Our goal is to use the flexible assistance of IRS to achieve the maximum energy efficiency of the NOMA system. Our design objects are the beam vector design of the base station and the phase matrix design of the IRS. The original problem is highly non-convex. We consider using the block coordinate descent method to design the phase matrix and beam vector separately. Simulation results show that our proposed scheme has better performance than traditional OMA and systems without IRS assistance.  相似文献   

3.
Computation offloading in mobile edge computing (MEC) systems emerges as a novel paradigm of supporting various resource-intensive applications. However, the potential capabilities of MEC cannot be fully unleashed when the communication links are blocked by obstacles. This paper investigates a double-reconfigurable-intelligent-surfaces (RISs) assisted MEC system. To efficiently utilize the limited frequency resource, the users can partially offload their computational tasks to the MEC server deployed at base station (BS) by adopting non-orthogonal multiple access (NOMA) protocol. We aim to minimize the energy consumption of users with limited resource by jointly optimizing the transmit power of users, the offloading fraction of users and the phase-shifts of RISs. Since the problem is non-convex with highly coupled variables, the block coordinate descent (BCD) method is leveraged to alternatively optimize the decomposed four subproblems. Specifically, we invoke successive convex approximation for low complexity (SCALE) and Dinkelbach technique to tackle the fractional programming of power optimization. Then the offloading fraction is obtained by closed-form solution. Further, we leverage semidefinite relaxation (SDR) and bisection method to address the phase-shifts design of double RISs. Finally, numerical results illustrate that the proposed double-RIS assisted NOMA scheme is capable of efficiently reducing the energy consumption and achieves significant performance gain over the benchmark schemes.  相似文献   

4.
This paper investigates the physical layer security of an intelligent reflecting surface (IRS) aided non-orthogonal multiple access (NOMA) networks, where a remote user is regarded as an eavesdropper to intercept the information of nearby user. To evaluate the security performance of IRS-aided NOMA networks, a problem of maximizing achievable secrecy rate is formulated via jointly optimizing the beamforming and phase shifting. More specifically, we aim to tackle the non-convex problem by optimizing beamforming vector as well as phase shifting matrix with the assistance of block coordinate descent (BCD) and minorization maximization (MM) algorithms. Numerical results illustrate that: 1) The secrecy rates of IRS-aided NOMA with BCD and MM algorithms are superior to that of orthogonal multiple access schemes; 2) With increasing the number of reflecting elements, the secrecy rates of IRS-aided NOMA networks are achieved carefully; and 3) The IRS-aided NOMA networks are capable of relieving the transmission pressure of base station.  相似文献   

5.
As an novel paradigm, computation offloading in the mobile edge computing (MEC) system can effectively support the resource-intensive applications for the mobile devices (MD) equipped with limited computing capability. However, the hostile radio transmission and data leakage during the offloading process may erode the MEC system’s potential. To tackle these hindrances, we investigate an IRS-assisted secure MEC system with eavesdroppers, where the intelligent reflecting surface (IRS) is deployed to enhance the communication between the MD and the AP equipped with edge servers and the malicious eavesdroppers may attack the wireless data offloaded by MD. The MD opt for offloading part of the tasks to the edge server for execution to support the computation-intensive applications. Moreover, the relevant latency minimization problem is formulated by optimizing the offloading ratio, the allocation of edge server computing capability, the multiple-user-detection (MUD) matrix and the IRS phase shift parameters, subject to the constraints of edge computation resource and practical IRS phase shifts. Then, the original problem is decouple into two subproblem, and the computing and communication subproblems are alternatively optimized by block coordinate descent (BCD) method with low complexity. Finally, simulation results demonstrate that the proposed scheme can significantly enhance the performance of secure offloading in the MEC system.  相似文献   

6.
Satellite communication is expected to play a vital role in realizing Internet of Remote Things (IoRT) applications. This article considers an intelligent reflecting surface (IRS)-assisted downlink low Earth orbit (LEO) satellite communication network, where IRS provides additional reflective links to enhance the intended signal power. We aim to maximize the sum-rate of all the terrestrial users by jointly optimizing the satellite’s precoding matrix and IRS’s phase shifts. However, it is difficult to directly acquire the instantaneous channel state information (CSI) and optimal phase shifts of IRS due to the high mobility of LEO and the passive nature of reflective elements. Moreover, most conventional solution algorithms suffer from high computational complexity and are not applicable to these dynamic scenarios. A robust beamforming design based on graph attention networks (RBF-GAT) is proposed to establish a direct mapping from the received pilots and dynamic network topology to the satellite and IRS’s beamforming, which is trained offline using the unsupervised learning approach. The simulation results corroborate that the proposed RBF-GAT approach can achieve more than 95% of the performance provided by the upper bound with low complexity.  相似文献   

7.
In this paper, we consider the latency minimization problem via designing intelligent reflecting surface (IRS)-assisted mobile edge computing (MEC) networks. For the scene when local users cannot complete all computing tasks independently, a common solution is transferring tasks to cloud servers. We consider that the MEC system contains multiple independent users, and each user sends task data to the base station in a partially offloaded manner. Our goal is to minimize the maximum latency for all users. The original problem is strongly non-convex, which caused difficulty to solve. We first introduce a new variable to transform the max–min problem into an alternative minimization problem, and then solve each optimization variable separately by the block coordinate descent method. Finally, our simulation experiments demonstrate that our proposed scheme obtain better performance with respect to other existing schemes.  相似文献   

8.
Full-duplex (FD) transmission holds a great potential of improving the sum data rate of wireless communication systems. However, the self-interference introduced by the full-duplex transmitter brings a big challenge to enhance the energy efficiency. This paper investigates the power allocation problem in a full-duplex two-way (FDTW) communication network over an OFDM channel, aiming at improving the sum data rate and energy efficiency. We first characterize the sum rate and energy efficiency achieved in a single-carrier FDTW system. The optimal transmit power that achieves the maximal sum data rate is presented. The energy efficiency maximization problem is solved by using fractional programming. Then we further formulate sum rate and energy efficiency maximization problem in a multi-subcarrier FDTW system. In particular, the sub-optimal transmit power allocation which achieves a decent sum rate improvement is found by using a proposed iterative algorithm. By combining the iterative algorithm and fractional programming, we further maximize the energy efficiency of the multi-subcarrier system. With our proposed algorithm, we can easily obtain an optimal transmit power that approximates the global optimal solution. Simulation results show that using the obtained optimal transmit power allocation algorithm can significantly improve the sum rate and energy efficiency in both single-carrier and multi-subcarrier systems.  相似文献   

9.
Nowadays, more and more multimedia services are supported by Mobile Edge Computing (MEC). However, the instability of the wireless environment brings a lot of uncertainty to the computational offloading. Additionally, intelligent reflecting surface (IRS) is considered as a potential technology to enhance Quality of Service (QoS). Therefore, in this paper, we establish a framework for IRS-assisted MEC computational offloading to solve this problem and take fairness optimization as a key point involving communication and computing resources. Minimize user consumption by optimizing bandwidth allocation, task offloading ratio, edge computing resources, transmission power and IRS phase shifts. Firstly, we decompose the problem into three aspects, such as bandwidth allocation, computing resource allocation, transmission power and IRS phase shifts. Then, an alternative optimization algorithm is proposed to find the optimum solution and its convergence is proved. Secondly, since the optimization problem on transmission power and IRS phase shifts is non-convex, we propose Riemann gradient descent (R-SGD) algorithm to solve it. Finally, numerical results show that our proposed algorithm performs better than other algorithms and achieves a superiority in the framework.  相似文献   

10.
We consider an intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) in which a multi antenna power beacon (PB) sends a dedicated energy signal to a wireless powered source. The source first harvests energy and then utilizing this harvested energy, it sends an information signal to destination where an external interference may also be present. For the considered system model, we formulated an analytical problem in which the objective is to maximize the throughput by jointly optimizing the energy harvesting (EH) time and IRS phase shift matrices. The optimization problem is high dimensional non-convex, thus a good quality solution can be obtained by invoking any state-of-the-art algorithm such as Genetic algorithm (GA). It is well-known that the performance of GA is generally remarkable, however it incurs a high computational complexity. To this end, we propose a deep unsupervised learning (DUL) based approach in which a neural network (NN) is trained very efficiently as time-consuming task of labeling a data set is not required. Numerical examples show that our proposed approach achieves a better performance–complexity trade-off as it is not only several times faster but also provides almost same or even higher throughput as compared to the GA.  相似文献   

11.
Outage probability (OP) performance of multiple-intelligent reflecting surface (IRS)-assisted is presented for a practically important single-input-single-output (SISO) wireless communication system over Rician fading channels where the IRS panel selection is considered. We investigate the SISO wireless communication scenario in which a single antenna transmitting node is sending its message to the receiving node with the aid of the best IRS panel selection. This wireless communication scenario model is a typical application of the uplink scenarios for future cellular wireless systems. We derive approximate OP expressions in the closed form using both the central limit theorem and the Laguerre series expansion. Further, we also derive a simple asymptotic OP to get diversity order and coding gain. The influence of each system parameter on OP performance is thoroughly investigated. In addition, the analytical OP results are corroborated with simulated OP results to confirm the accuracy of our presented analytical results.  相似文献   

12.
Massive multiple-input-multiple-output (Massive MIMO) significantly improves the capacity of wireless communication systems. However, large-scale antennas bring high hardware costs, and security is a vital issue in Massive MIMO networks. To deal with the above problems, antenna selection (AS) and artificial noise (AN) are introduced to reduce energy consumption and improve system security performance, respectively. In this paper, we optimize secrecy energy efficiency (SEE) in a downlink multi-user multi-antenna scenario, where a multi-antenna eavesdropper attempts to eavesdrop the information from the base station (BS) to the multi-antenna legitimate receivers. An optimization problem is formulated to maximize the SEE by jointly optimizing the transmit beamforming vectors, the artificial noise vector and the antenna selection matrix at the BS. The formulated problem is a nonconvex mixed integer fractional programming problem. To solve the problem, a successive convex approximation (SCA)-based joint antenna selection and artificial noise (JASAN) algorithm is proposed. After a series of relaxation and equivalent transformations, the nonconvex problem is approximated to a convex problem, and the solution is obtained after several iterations. Simulation results show that the proposed algorithm has good convergence behavior, and the joint optimization of antenna selection and artificial noise can effectively improve the SEE while ensuring the achievable secrecy rate.  相似文献   

13.
In this paper, we focus on minimizing energy consumption under the premise of ensuring the secure offloading of ground users. We used dual UAVs and intelligent reflective surfaces (IRS) to assist ground users in offloading tasks. Specifically, one UAV is responsible for collecting task data from ground users, and the other UAV is responsible for sending interference noise to counter potential eavesdroppers. The IRS can not only improve the transmission capacity of ground users, but also reduce the acceptance of eavesdroppers. The original problem is strong non-convex, so we consider using the block coordinate descent method. For the proposed sub-problems, we use Lagrangian duality and first-order Taylor expansion to obtain the results, and finally achieve system design through alternate optimization. The simulation results show that our proposed scheme is significantly better than other existing schemes.  相似文献   

14.
In this paper, we consider a multi-user cognitive radio network (CRN) equipped with an intelligent reflecting surface (IRS). We examine the network performance by evaluating the fairness of the secondary system, which is satisfying the minimum required signal to interference and noise ratio (SINR) for each secondary user (SU). The minimum SINR of the SUs is maximized by joint optimization of the beamforming vector and three-dimensional beamforming (3DBF) angles at the secondary base station (SBS) and also the phase shifts of the IRS elements. This optimization problem is highly non-convex. To solve this problem, we utilize Dinkelbach’s algorithm along with an alternating optimization (AO) approach to achieve some sub-problems. Accordingly, by further applying a semi-definite relaxation method, we convert these sub-problems to equivalent convex forms and find a solution. Furthermore, analytically we propose an algorithm for optimizing 3DBF angles at the SBS. Through numerical results, the improvement of the sum SINR of the secondary system using the proposed method is illustrated. Moreover, it is shown that as the number of reflecting elements of IRS increases, the sum SINR significantly augments while satisfying fairness. Also, the convergence of the proposed algorithm is verified utilizing numerical results.  相似文献   

15.
Energy Harvesting (EH) is a promising paradigm for 5G heterogeneous communication. EH-enabled Device-to-Device (D2D) communication can assist devices in overcoming the disadvantage of limited battery capacity and improving the Energy Efficiency (EE) by performing EH from ambient wireless signals. Although numerous research works have been conducted on EH-based D2D communication scenarios, the feature of EH-based D2D communication underlying Air-to-Ground (A2G) millimeter-Wave (mmWave) networks has not been fully studied. In this paper, we considered a scenario where multiple Unmanned Aerial Vehicles (UAVs) are deployed to provide energy for D2D Users (DUs) and data transmission for Cellular Users (CUs). We aimed to improve the network EE of EH-enabled D2D communications while reducing the time complexity of beam alignment for mmWave-enabled D2D Users (DUs). We considered a scenario where multiple EH-enabled DUs and CUs coexist, sharing the full mmWave frequency band and adopting high-directive beams for transmitting. To improve the network EE, we propose a joint beamwidth selection, power control, and EH time ratio optimization algorithm for DUs based on alternating optimization. We iteratively optimized one of the three variables, fixing the other two. During each iteration, we first used a game-theoretic approach to adjust the beamwidths of DUs to achieve the sub-optimal EE. Then, the problem with regard to power optimization was solved by the Dinkelbach method and Successive Convex Approximation (SCA). Finally, we performed the optimization of the EH time ratio using linear fractional programming to further increase the EE. By performing extensive simulation experiments, we validated the convergence and effectiveness of our algorithm. The results showed that our proposed algorithm outperformed the fixed beamwidth and fixed power strategy and could closely approach the performance of exhaustive search, particle swarm optimization, and the genetic algorithm, but with a much reduced time complexity.  相似文献   

16.
In this paper, we investigate the unmanned aerial vehicle (UAV) relay-assisted secure short packet communication. The UAV acts as a decode-and-forward relay to transmit control signals from the source to the actuators in the presence of a ground eavesdropper (EV) whose imperfect channel state information is available at the UAV. Specially, non-orthogonal multiple access is adopted in our work to achieve more connections and improve the fairness of communication and the short packets are employed for data transmission to reduce the latency. Explicitly, we maximize the minimum average secrecy throughput among all actuators by jointly optimizing the UAV trajectory, transmit power and blocklength allocation, which generates a challenging optimization problem. Therefore, we propose an iterative algorithm based on block coordinate descent method and successive convex approximation technique to handle the non-convex problem. Numerical results show that the proposed scheme has better performance compared to the benchmark schemes.  相似文献   

17.
This paper studies how to attain fairness in communication for omniscience that models the multi-terminal compress sensing problem and the coded cooperative data exchange problem where a set of users exchange their observations of a discrete multiple random source to attain omniscience—the state that all users recover the entire source. The optimal rate region containing all source coding rate vectors that achieve omniscience with the minimum sum rate is shown to coincide with the core (the solution set) of a coalitional game. Two game-theoretic fairness solutions are studied: the Shapley value and the egalitarian solution. It is shown that the Shapley value assigns each user the source coding rate measured by their remaining information of the multiple source given the common randomness that is shared by all users, while the egalitarian solution simply distributes the rates as evenly as possible in the core. To avoid the exponentially growing complexity of obtaining the Shapley value, a polynomial-time approximation method is proposed which utilizes the fact that the Shapley value is the mean value over all extreme points in the core. In addition, a steepest descent algorithm is proposed that converges in polynomial time on the fractional egalitarian solution in the core, which can be implemented by network coding schemes. Finally, it is shown that the game can be decomposed into subgames so that both the Shapley value and the egalitarian solution can be obtained within each subgame in a distributed manner with reduced complexity.  相似文献   

18.
In this paper, we propose an improved physical layer key generation scheme that can maximize the secret key capacity by deploying intelligent reflecting surface (IRS) near the legitimate user aiming at improving its signal-to-noise ratio (SNR). We consider the scenario of multiple input single output (MISO) against multiple relevant eavesdroppers. We elaborately design and optimize the reflection coefficient matrix of IRS elements that can improve the legitimate user’s SNR through IRS passive beamforming and deteriorate the channel quality of eavesdroppers at the same time. We first derive the lower bound expression of the achievable key capacity, then solve the optimization problem based on semi-definite relaxation (SDR) and the convex–concave procedure (CCP) to maximize the secret key capacity. Simulation results show that our proposed scheme can significantly improve the secret key capacity and reduce hardware costs compared with other benchmark schemes.  相似文献   

19.
This paper studies artificial noise (AN)-aided beamforming design in an intelligent reflecting surface (IRS)-assisted system empowered by simultaneous wireless information and power transfer (SWIPT) technique. Multiple power splitting (PS) single-antenna receivers simultaneously receive information and energy from a multi-antenna base station (BS). Although all users are legitimate, in each transmission interval only one receiver is authorized to receive information and the others are only allowed to harvest power which are considered as unauthorized receivers (URs). To prevent information decoding by URs, AN signal is transmitted from the BS. We adopt a non-linear model for energy harvesting. In the optimization problem, we minimize the total transmit power, and for this purpose, we utilize an alternating optimization (AO) algorithm. For the non-convex rank-one constraint for IRS phase shifts, we utilize a sequential rank-one constraint relaxation (SROCR) algorithm. In addition to single antenna URs scenario, we investigate multi-antenna URs scenario and evaluate their performance. Simulation results validate the effectiveness of using IRS.  相似文献   

20.
This paper considers a multi-user wireless communication network supported by a multiple-antenna base station (BS), where the users who are located sufficiently close to the BS employ wireless energy harvesting (EH) to replenish their energy needs. The objective of this work is to design an efficient beamforming to maximize the minimum throughput among all the information users (IUs), subject to EH constraints. In this regard, transmit time-switching approach is employed, where energy and information are transmitted over different fractions of a time-slot. To achieve efficient EH, a conjugate beamforming (matched filtering) is applied. To design efficient information beamforming for max–min throughput optimization, conventional zero-forcing (ZF) beamforming can be adopted, however, it will not suppress multi-user interference if the number of users is greater than the number of antennas at the BS. To this end, different from the existing works which employ regularized zero-forcing (RZF) beamforming, this work proposes a new generalized zero-forcing (GZF) beamforming, which promises better max–min throughput compared to that achieved by the RZF beamforming. A new path-following algorithm is developed to achieve max–min throughput optimization by GZF beamforming, which is based on a simple convex quadratic program over each iteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号