首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ZnO-based resistive switching device Ag/ZnO/TiN, and its modified structure Ag/ZnO/Zn/ZnO/TiN and Ag/graphene/ZnO/TiN, were prepared. The effects of inserted Zn layers in ZnO matrix and an interface graphene layer on resistive switching characteristics were studied. It is found that metal ions, oxygen vacancies, and interface are involved in the RS process. A thin inserted Zn layer can increase the resistance of HRS and enhance the resistance ratio. A graphene interface layer between ZnO layer and top electrode can block the carrier transport and enhance the resistance ratio to several times. The results suggest feasible routes to tailor the resistive switching performance of ZnO-based structure.  相似文献   

2.
The resistive switching effect in metal–oxide–metal (MOM) structures has been investigated, where the 10% Li-doped ZnO layer was used as an oxide layer, as well as Pt and 20% fluorine doped SnO2 (SnO2:F) were used as a bottom electrodes. The current–voltage (IV) and switching (It) characteristics of Ag/ZnO:Li/Pt and Ag/ZnO:Li/SnO2:F structures were investigated. The unipolar resistive switching is detected in the structures with the Pt, while the use of transparent conductive SnO2:F electrode instead of Pt, results to the bipolar memory effect.  相似文献   

3.
In this work, reproducible and stable bipolar resistive switching behavior without the requirement of forming process is observed in the memory device with Au/ZnO/ITO structure. It shows a high Ron/Roff ratio, where Ron and Roff are the resistance at low resistance state (LRS) and high resistance state (HRS), respectively. The dominated transport mechanisms for LRS and HRS are related to space charge limited current and Ohmic behavior, respectively. This bipolar resistive behavior is attributed to the formation and rupture of conducting filaments which are constructed with oxygen vacancies. The Au/ZnO/ITO device discussed in this work shows huge potential applications in the next generation nonvolatile memory field.  相似文献   

4.
《Current Applied Physics》2015,15(4):441-445
In this study, the resistive switching performance of amorphous indium–gallium–zinc oxide (a-IGZO) resistive switching random-access memory (ReRAM) was improved by inserting a thin silicon oxide layer between silver (Ag) top electrode and a-IGZO resistive switching layer. Compared with the single a-IGZO layer structure, the SiO2/a-IGZO bi-layer structure exhibits the higher On/Off resistance ratio larger than 103, and the lower operation power using a smaller SET compliance current. In addition, good endurance and excellent retention characteristics were achieved. Furthermore, multilevel resistance states are obtained through adjusting SET compliance current and RESET stop voltage, which shows a promise for high-performance nonvolatile multilevel memory application.  相似文献   

5.
郭家俊  董静雨  康鑫  陈伟  赵旭 《物理学报》2018,67(6):63101-063101
实验表明掺杂是一种改善阻变存储器性能的有效手段,但其物理机理鲜有研究.本文采用第一性原理方法系统研究了过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器中氧空位迁移势垒和形成能的影响.计算结果表明Ni掺杂可同时有效降低+1和+2价氧空位在掺杂原子附近的迁移势垒,X掺杂均减小了氧空位的形成能,特别是掺杂Ni时氧空位的形成能减小最为显著(比未掺杂时减少了64%).基于该结果制备了未掺杂和Ni掺杂ZnO阻变存储器,研究表明通过掺杂控制体系中氧空位的迁移势垒和形成能,可以有效改善器件的初始化过程、操作电压、保持性等阻变性能.研究结果有助于理解探究影响阻变的微观机制,并可为掺杂提高阻变存储器性能提供一定的理论指导.  相似文献   

6.
Motivated by the successful use of strontium titanate with different doping metals for memory cells on the basis of resistive switching and the recent findings on the major importance of oxygen vacancy redistribution in this compound, the present work shows the possibility of a non-volatile resistance change memory based on vacancy-doped SrTiO3. The formation of corresponding metal/SrTiO3−δ junctions (δ>0) in an electric field will be discussed as well as the switching between ohmic and Schottky-type contact behavior. A notable hysteresis in the current–voltage characteristics is used to carry out Write, Read, and Erase operations exemplifying the memory cell properties of such junctions. But whereas the electric field-induced formation of Schottky-type junctions is explainable by oxygen vacancy redistribution, the resistive switching needs to be discussed in terms of vacancies serving as electron trap states at the metal/oxide interface.  相似文献   

7.
赵晶  董静雨  任书霞  张礼勇  赵旭  陈伟 《中国物理 B》2014,23(12):127301-127301
Oxygen vacancy plays a crucial role in resistive switching. To date, a quantitative study about the distribution of the oxygen vacancies and its effect on the resistive switching has not yet been reported. In this study, we report our first-principles calculations in ZnO-based resistive switching memory grown on a Pt substrate. We show that the oxygen vacancies prefer to be located in the ZnO (0001) plane, i.e. in the direction parallel to the film surface in the preparation process. These oxygen vacancies drift easily in the film when a voltage is applied in the SET process and prefer to form a line defect perpendicular to the film surface. An isolated oxygen vacancy makes little contribution to the conductivity of ZnO, whereas the ordering of oxygen vacancies in the direction perpendicular to the film surface leads to a dramatic enhancement of the conductivity and thus forms conductive filaments. The semiconducting characteristics of the conductive filaments are confirmed experimentally.  相似文献   

8.
In this study, unipolar resistive switching (URS) characteristics in ZnO thin film memory devices were systematically investigated with variable defect content. ZnO films displayed typically URS behavior while oxygen-deficient ZnO1?x films did not show resistive switching effects. The devices with two intentional Ohmic interfaces still show URS. These results show that appearance of URS behavior can be dominated by initial oxygen vacancy content in ZnO thin films. Modest increase in oxygen vacancy content in ZnO films will lead to forming-free and narrower distributions of switching parameters (set and reset voltage, high and low resistance states). It indicates that controlling the initial oxygen vacancy content was an effective method to enhance the URS performance.  相似文献   

9.
We report reproducible bipolar resistive memory devices based on Au/ZnO nanowire networks (ZnO NWNs)/ITO, which show a high Ron/Roff ratio (~104) and narrow dispersion of set and reset threshold voltages. The dominant conduction mechanisms of low resistance state and high resistance state were verified by Ohmic behavior and space charge limited current, respectively. The switching mechanism is confirmed in terms of the formation and rupture of conductive filaments, with oxygen vacancies localized on the ZnO NWNs surface involved in. The Au/ZnO NWNs/ITO devices presented in our work show potential applications in the next generation nonvolatile memory field. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
《Current Applied Physics》2018,18(9):953-960
We fabricated the GaIn/TiO2-CuO/ITO resistive memory and studied the effect of fatigue fracture on the switching performance. The device shows the stable bipolar resistive switching over 108 s under ambient condition. The ON/OFF ratio decreases seriously with increase of bending cycles. The main fatigue fracture caused by dynamic strain includes micro defect between nanoparticles, vertical crack along the film thickness and interfacial delamination between layers. Finite element analysis indicates that channel crack plays a key role to cause the interfacial delamination between function layer and ITO electrode. The channel crack and interfacial delamination can hinder the formation of tree−like conduction filaments. Moreover, oxygen via the cracks can be easily transformed to ions and reduce the density of oxygen vacancies under the catalytic assistance of CuO. Our studies may provide some useful information for inorganic materials applied in flexible nonvolatile memory.  相似文献   

11.
《Current Applied Physics》2019,19(12):1421-1426
The resistive random access memory (RRAM) based on resistive switching effect has considered to be the most advanced next generation memory, in which the switching direction determines the order of reading-writing. In this work, the rare-earth metal Er2O3 was used as functional layer, and Ag and indium-tin-oxide (ITO) are selected as top and bottom electrode to fabricate resistive switching device. Further, it is observed that the switching direction and memory window of resistive switching device can be regulated by exchanging top and bottom electrode. Moreover, the complementary switching memory behavior in Ag/Er2O3/ITO/Er2O3/Ag structure was also observed. Through mechanism analysis, it is expected that the barrier changes and metal-ions oxidation-reduction should be responsible for the conversion of switching direction and regulation of memory window. This work opens up a way to the development of next generation new concept memory.  相似文献   

12.
Zinc Oxide (ZnO) thin films have been addressed as promising candidates for the fabrication of Resistive Random Access Memory devices, which are alternative to conventional charge-based flash memories. According to the filamentary conducting model and charge trapping/detrapping theory developed in the last decade, the memristive behavior of ZnO thin films is explained in terms of conducting filaments formed by metallic ions and/or oxygen vacancies, and their breaking through electrochemical redox reactions and/or recombination of oxygen vacancies/ions. A comparative review of the memristive properties of ZnO thin films grown by sputtering, atomic layer deposition (ALD), pulsed laser deposition (PLD), and sol-gel methods is here proposed. Sputtered ZnO thin films show promising resistive switching behaviors, showing high on/off ratios (10–104), good endurance, and low operating voltages. ALD is also indicated to be useful for growing conformal ZnO layers with atomic thickness control, resulting in important resistive switching characteristics, such as relatively high on/off ratios and low operating voltages. High insulating epitaxial ZnO thin films can be obtained by PLD, showing reliable switching properties at low voltages and with good retention. On the contrary, the sol-gel approach generally results in ZnO thin films with poor resistive switching behaviors. Nevertheless, thin films derived from ZnO NPs show improved switching performances, with higher on/off ratios and lower operating voltages. Independently of the synthetic approach, doped ZnO thin films exhibit better resistive switching behaviors than pristine ones, coupling a strong increase of the on/off ratio with a more stable switching response.  相似文献   

13.
The I-V characteristics of In2O3:SnO2/TiO2/In2O3:SnO2 junctions with different interracial barriers are inves- tigated by comparing experiments. A two-step resistance switching process is found for samples with two interfacial barriers produced by specific thermal treatment on the interfaces. The nonsynchronous occurrence of conducting filament formation through the oxide bulk and the reduction in the interracial barrier due to the migration of oxygen vacancies under the electric field is supposed to explain the two-step resistive switching process. The unique switching properties of the device, based on interracial barrier engineering, could be exploited for novel applications in nonvolatile memory devices.  相似文献   

14.
Revealing the atomic-nature of the conductive path in TiO2 layer based resistive-switching devices still remains a critical challenge. Metal atoms doping in TiO2 layer are always considered as an effective way to improve the electronic properties in resistive random access memory. Efforts to clarify the effects of metal atom substitution on the conductive path in rutile TiO2 have been done by using first-principles calculation. The dependence of the conductive path on the substitution of Ag/Cu/Al/Hf/Ta/V adjacent to the ordering oxygen vacancies or away from them has been studied in detail to elucidate the formation mechanism of conductive path. Theoretical investigation demonstrates that Hf or V substitution where it occurs adjacent to the oxygen vacancies benefits electrons aggregation among Ti-ions. Such electrons aggregation, which is one type of the conductive path in TiO2, will be prompted by Ti-t2g orbital electron. The dependent relation of the conductive path on the substitution of Ag/Cu/Al/Hf/Ta/V will be an important factor to optimize future resistive random access memory.  相似文献   

15.
蒋然  杜翔浩  韩祖银  孙维登 《物理学报》2015,64(20):207302-207302
为了研究阻变存储器导电细丝的形成位置和分布规律, 使用X射线光电子能谱研究了Ti/HfO2/Pt阻变存储器件单元中Hf 4f的空间分布, 得到了阻变层的微结构信息. 通过I-V测试, 得到该器件单元具有典型的阻变特性; 通过针对Hf 4f的不同深度测试, 发现处于低阻态时, 随着深度的增加, Hf4+化学组分单调地减小; 而处于高阻态和未施加电压前, 该组分呈现波动分布; 通过Hf4+在高阻态和低阻态下组分含量以及电子能损失谱分析, 得到高阻态下Hf4+组分的平均含量要高于低阻态; 另外, 高阻态和低阻态下的O 1s谱随深度的演变也验证了Hf4+的变化规律. 根据实验结果, 提出了局域分布的氧空位聚簇可能是造成这一现象的原因. 空位簇间的链接和断裂决定了导电细丝的形成和消失. 由于导电细丝容易在氧空位缺陷聚簇的地方首先形成, 这一研究为导电细丝的发生位置提供了参考.  相似文献   

16.
Lanthanum-doped ZnO (Zn0.99La0.01O) polycrystalline thin films were deposited on Pt/Ti/SiO2/Si substrates by a chemical solution deposition method. Metal/La-doped ZnO/Pt sandwich structures were constructed by depositing different top electrodes (Ag and Pt). Unipolar switching and bipolar switching characteristics were investigated in Pt/La-doped ZnO/Pt and Ag/La-doped ZnO/Pt structures, respectively. Compared with the undoped devices (Pt/ZnO/Pt and Ag/ZnO/Pt), the La-doped devices exhibits superior resistive switching performances, such as narrow distribution of the resistive switching properties (R ON, R OFF, V Set, and V Reset), higher R OFF/R ON ratio and sharp switching transition.  相似文献   

17.
《Current Applied Physics》2019,19(9):987-991
Orthorhombic Bi2SiO5 thin films with dense surface were synthesized by using a chemical solution deposition method. The crystallized films were first utilized to implement resistive memory cells with Pt/Bi2SiO5/Pt sandwich architecture. It exhibited outstanding switching parameters including concentrated distributions of low and high resistance states, uniform switching voltages, cycling endurance, and long retention. Furthermore, the model of formation and rupture of conductive filaments consisted of oxygen vacancies was used to well explain resistive switching behavior. The results revealed that the solution-processed Bi2SiO5 thin film devices have great potential for forefront application in nonvolatile memory.  相似文献   

18.
The anti-clockwise bipolar resistive switching in Ag/NiO/ITO (Indium–Tin–Oxide) heterojunctional thin film assembly is investigated. A sequential voltage sweep in 0 → V max → 0 → ?V min → 0 order shows intrinsic hysteresis behaviour and resistive switching in current density (J)–voltage (V) measurements at room temperature. Switching is induced by possible rupture and recovery of the conducting filaments in NiO layer mediated by oxygen ion migration and interfacial effects at NiO/ITO junction. In the high-resistance OFF-state space charge limited current passes through the filamentary path created by oxygen ion vacancies. In OFF-state, the resistive switching behaviour is attributed to trapping and detrapping processes in shallow trap states mostly consisting of oxygen vacancies. The slope of Log I vs Log V plots, in shallow trap region of space charge limited conduction is ~2 (I ∝ V 2) followed by trap-filled and trap-free conduction. In the low-resistance ON-state, the observed electrical features are governed by the ohmic conduction.  相似文献   

19.
We have investigated the role of amorphous titanium oxide film in the reliable bipolar resistive switching of Al/TiO2/Al resistive random access memory devices. As TiO2 deposition temperature decreased, a more stable endurance characteristic was obtained. We proposed that the degradation of the bipolar resistive switching property of Al/TiO2/Al devices is closely related to the imperfect migration of oxygen ions between the top insulating interface layer and the oxygen-deficient titanium oxide during the set and reset operations. In addition, the dependence of the TiO2 film thickness on the switching property was also studied. As the thickness of the film increased, a reduction in the resistance of the high resistance state rapidly appeared. We attribute the improved endurance performance of thin and low-temperature grown TiO2 devices to the amorphous state with a low film density.  相似文献   

20.
《Current Applied Physics》2020,20(3):431-437
Based on the bipolar resistive switching (RS) characteristics of SnO2 films, we have fabricated a new prototypical device with sandwiched structure of Metal/SnO2/fluorine-doped tin oxide (FTO). The SnO2 microspheres film was grown on FTO glass by template-free hydrothermal synthesis, which was evaporated with various commonly used electrodes such as aluminium (Al), silver (Ag), and gold (Au), respectively. Typical self-rectifying resistance switching behaviors were observed for the RS devices with Al and Au electrodes. However, no obvious rectifying resistance switching behavior was observed for the RS device with Ag electrode. Above results were interpreted by considering the different interface barriers between SnO2 and top metal electrodes. Our current studies pave the ways for modulating the self-rectifying resistance switching properties of resistive memory devices by choosing suitable metal electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号