首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the author studies the stability of delayed reset control systems with distributed state resetting. First, the concept of distributed state reset is proposed which is capable of compensating for the performance deterioration caused by time delays. Second, a sufficient condition for asymptotical stability based on the Lyapunov–Krasovskii functional method is proved, and a sufficient condition in terms of LMIs to ensure asymptotical stability of reset systems with piecewise constant reset mappings is obtained. Last, an illustrative example is provided to show that compared to the traditional reset scheme, the proposed distributed state reset scheme is potentially capable of achieving better performance.  相似文献   

2.
In this paper, the stability problem is investigated for networked control systems. Input delays and multiple communication imperfections containing time-varying transmission intervals and transmission protocols are considered. A unified framework based on the hybrid systems with memory is proposed to model the whole networked control system. Hybrid systems with memory are used to model hybrid systems affected by delays and permit multiple jumps at a jumping instant. The stability analysis depends on the Lyapunov–Krasovskii functional approaches for hybrid systems with memory and the proposed stability theorem does not need strict decrease of the Lyapunov–Krasovskii functional during jumps. Based on the developed stability theorems, stability conditions for networked control systems are established. An explicit formula is given to compute the maximal allowable transmission interval. In the special case that the networked control system contains linear dynamics, an explicit Lyapunov functional is constructed and stability conditions in terms of linear matrix inequalities (LMI) are proposed. Finally, an example of a chemical batch reactor is given to illustrate the effectiveness of the proposed results.  相似文献   

3.
We consider the problem of autonomously controlling a fixed-wing aerial vehicle to visit a neighborhood of a pre-defined waypoint, and when nearby it, loiter around it. To solve this problem, we propose a hybrid feedback control strategy that unites two state-feedback controllers: a transit controller capable of steering or transitioning the vehicle to nearby the waypoint and a loiter controller capable of steering the vehicle about a loitering radius. The aerial vehicle is modeled on a level flight plane with system performance characterized in terms of the aerodynamic, propulsion, and mass properties. Thrust and bank angle are the control inputs. Asymptotic stability properties of the individual control algorithms, which are designed using backstepping, as well as of the closed-loop system, which includes a hybrid algorithm uniting the two controllers, are established. In particular, for this application of hybrid feedback control, Lyapunov functions and hybrid systems theory are employed to establish stability properties of the set of points defining loitering. The analytical results are confirmed numerically by simulations.  相似文献   

4.
Linear Parameter-Varying (LPV) systems with jumps and piecewise differentiable parameters is a class of hybrid LPV systems for which no tailored stability analysis and stabilization conditions have been obtained so far.1 We fill this gap here by proposing an approach based on a clock- and parameter-dependent Lyapunov function yielding stability conditions under both constant and minimum dwell-times. Interesting adaptations of the latter result consist of a minimum dwell-time stability condition for uncertain LPV systems and LPV switched impulsive systems. The minimum dwell-time stability condition is notably shown to naturally generalize and unify the well-known quadratic and robust stability criteria all together. Those conditions are then adapted to address the stabilization problem via timer-dependent and a timer- and/or parameter-independent (i.e. robust) state-feedback controllers, the latter being obtained from a relaxed minimum dwell-time stability condition involving slack-variables. Finally, the last part addresses the stability of LPV systems with jumps under a range dwell-time condition which is then used to provide stabilization conditions for LPV systems using a sampled-data state-feedback gain-scheduled controller. The obtained stability and stabilization conditions are all formulated as infinite-dimensional semidefinite programming problems which are then solved using sum of squares programming. Examples are given for illustration.  相似文献   

5.
We address the idle speed control problem in automotive electronics using hybrid methods to derive a digital control law with guaranteed properties. Associating a switching system with the hybrid system that describes the engine operation is crucial to developing a computationally feasible approach. For switching systems with minimum and maximum dwell times and controlled resets, we are able to derive digital control strategies with guaranteed properties that ensure safety. The proposed methodology, while motivated by the idle control problem, is of general interest for hybrid systems for which minimum and maximum dwell times can be established. In our modeling approach, we do not assume synchronization between sampling time and switching time. This is an important technical aspect in general, and in particular for our application, where there is no reason why sampling and switching should be synchronized. Some simulation results are included to demonstrate the effectiveness of the approach.  相似文献   

6.
This paper focuses on the design of both periodic time- and event-triggered control laws of switched affine systems using a hybrid dynamical system approach. The novelties of this paper rely on the hybrid dynamical representation of this class of systems and on a free-matrix min-projection control, which relaxes the structure of the usual Lyapunov matrix-based min-projection control. This contribution also presents an extension of the usual periodic time-triggered implementation to the event-triggered one, where the control input updates are permitted only when a particular event is detected. Together with the definition of an appropriate optimization problem, a stabilization result is formulated to ensure the uniform global asymptotic stability of an attractor for both types of controllers, which is a neighborhood of the desired operating point. Finally, the proposed method is evaluated through a numerical example.  相似文献   

7.
The paper deals with model predictive control (MPC) of nonlinear hybrid systems with discrete inputs based on reachability analysis. In order to implement a MPC algorithm, a model of the process that we are dealing with is needed. In the paper, a hybrid fuzzy modelling approach is proposed. The hybrid system hierarchy is explained and the Takagi–Sugeno fuzzy formulation for hybrid fuzzy modelling purposes is tackled. An efficient method of identification of the hybrid fuzzy model is also discussed.

An algorithm that is–due to its MPC nature–suitable for controlling a wide spectrum of systems (provided that they have discrete inputs only) is presented.

The benefits of the algorithm employing a hybrid fuzzy model are verified on a batch reactor example. The results suggest that by suitably determining the cost function, satisfactory control can be attained, even when dealing with complex hybrid–nonlinear–stiff systems such as the batch reactor.

Finally, a comparison between MPC employing a hybrid linear model and a hybrid fuzzy model is carried out. It has been established that the latter approach clearly outperforms the approach where a linear model is used.  相似文献   


8.
对于一类具有状态和有限自动机输出时滞的离散混合系统,研究基于混合时滞观测器的混合反馈控制问题.通过系统线性部分和离散事件部分的Lyapunov函数构造了整个时滞系统的混合Lyapunov函数,进一步,给出混合反馈控制的设计方法且证明了闭环系统的稳定性.仿真例子说明该方法的有效性.  相似文献   

9.
Hybrid systems with memory are dynamical systems exhibiting both delayed and hybrid dynamics. Such systems can be described by hybrid functional inclusions. Classical invariance principles play an instrumental role in proving stability and convergence of dynamical systems. Invariance principles for general hybrid systems with delays, however, remain an open topic. In this paper, we prove invariance principles for hybrid systems with memory, using both Lyapunov–Razumikhin function and Lyapunov–Krasovskii functional methods. These invariance principles are then applied to derive two stability results as corollaries.  相似文献   

10.
Stability, reachability, and safety are crucial properties of dynamical systems. While verification and control synthesis of reach–avoid–stay objectives can be effectively handled by abstraction-based formal methods, such approaches can be computationally expensive due to the use of state–space discretization. In contrast, Lyapunov methods qualitatively characterize stability and safety properties without any state–space discretization. Recent work on converse Lyapunov-barrier theorems also demonstrates an approximate completeness for verifying reach–avoid–stay specifications of systems modeled by nonlinear differential equations. In this paper, based on the topology of hybrid arcs, we extend the Lyapunov-barrier characterization to more general hybrid systems described by differential and difference inclusions. We show that Lyapunov-barrier functions are not only sufficient to guarantee reach–avoid–stay specifications for well-posed hybrid systems, but also necessary for arbitrarily slightly perturbed systems under mild conditions. Numerical examples are provided to illustrate the main results.  相似文献   

11.
The problem of exponential mean-square stability of nonlinear singularly perturbed, stochastic hybrid systems is studied in this article. Two groups of nonlinear systems are considered separately. To obtain the sufficient conditions of stability, two basic approaches of stability analysis for hybrid systems with a given Markovian switching rule and any Markovian switching rule and singularly perturbed non–hybrid systems were combined. The Lyapunov techniques were used in both approaches. The obtained results are illustrated by examples.  相似文献   

12.
The sliding mode control (SMC) problem is investigated for Markovian jump systems (MJSs) under constrained communication bandwidth. A multi-node hybrid transmission strategy composed of an event-triggered protocol and the weight try-once-discard (WTOD) protocol is introduced into the sensor-to-controller (S/C) channel. Its key feature is that by using two dynamic thresholds, the number of the transmitted components may be dynamically regulated, not just the one with the largest difference as in the conventional WTOD protocol. That may greatly increase the flexibility of transmission under limited bandwidth, meanwhile, it is also beneficial to balance system performance and network burden. Then, a compensating strategy is proposed via the previous transmitted signals, and a scheduling signal-dependent sliding mode controller is designed. By using mode-dependent Lyapunov function, both the stochastic stability and the reachability are analyzed under different transmission cases, respectively. Moreover, an optimization problem on convergent domain is formulated and the binary-encoded genetic algorithm (GA) is utilized to search a desirable sliding gain. Finally, the proposed multi-node hybrid scheduling-based SMC scheme is illustrated via simulation results.  相似文献   

13.
This paper deals with the design of output feedback event-triggered controllers equipped with generalized holding devices. Both emulation and co-design settings are explored. Specifically, a robust observer-based event-triggered controller with a dwell time logic is proposed to achieve closed-loop stability. The closed-loop system is modeled as a hybrid system and analyzed via Lyapunov theory for hybrid systems. Sufficient conditions in the form of matrix inequalities are given to ensure global exponential stability and input-to-state stability with respect to measurement disturbances for the closed-loop system. The proposed conditions enable the design of the controller gains, event-triggering mechanism, and of general holding devices, thereby including classical zero-order-holder devices. Convex optimization schemes address the implicit objective consisting of reducing the number of updates of the control input. The effectiveness of the conditions are illustrated through an illustrative example borrowed from the literature.  相似文献   

14.
In this paper we study input-to-state stability (ISS) of large-scale networked control systems (NCSs) in which sensors, controllers and actuators are connected via multiple (local) communication networks which operate asynchronously and independently of each other. We model the large-scale NCS as an interconnection of hybrid subsystems, and establish rather natural conditions which guarantee that all subsystems are ISS, and have an associated ISS Lyapunov function. An ISS Lyapunov function for the overall system is constructed based on the ISS Lyapunov functions of the subsystems and the interconnection gains. The control performance, or “quality-of-control”, of the overall system is then viewed in terms of the convergence rate and ISS gain of the associated ISS Lyapunov function. Additionally, the “quality-of-service” of the communication networks is viewed in terms of the maximum allowable transmission interval (MATI) and the maximum allowable delay (MAD) of the network, and we show that the allowable quality-of-service of the communication networks is constrained by the required ISS gains and convergence rate of the hybrid subsystem corresponding to that network. Our results show that the quality-of-control of the overall system can be improved (or degraded) by improving (or relaxing) the quality-of-service of the communication networks. Alternatively, when relaxing the quality-of-service of one communication network, we can retain the quality-of-control of the overall system by improving the quality-of-service of one or more of the other communication networks. Our general framework will formally show these intuitive and insightful tradeoffs.  相似文献   

15.
The reset band is a simple idea, and a must in practice, to improve reset compensation by adding extra phase lead in a feedback loop. However, a formal treatment of how the reset band can affect stability and performance of a reset control system is still an open issue. This work approaches the problem of the existence and stability of limit cycles of reset control systems with reset band. A frequency domain approach is given by using standard methods based on the describing function. In addition, closed-form expressions have been obtained for the describing function of arbitrary order full reset compensators with and without reset band.  相似文献   

16.
In this note, a practical way to compute limit cycles in context of hybrid systems is investigated. As in many hybrid applications the steady state is depicted by a limit cycle, control design and stability analysis of such hybrid systems require the knowledge of this periodic motion. Analytical expression of this cycle is generally an impossible task due to the complexity of the dynamic. A fast algorithm is proposed and used to determine these cycles in the case where the switching sequence is known.  相似文献   

17.
A system-theoretic framework is proposed, which allows the study of hybrid uncertain systems, which do not satisfy the so-called “semigroup property.” Characterizations of the notion of robust global asymptotic output stability (RGAOS) are given. Based on the provided characterizations, the qualitative behavior of hybrid systems obtained by time-discretization of systems of ordinary differential equations with a globally asymptotically stable equilibrium point, is studied.  相似文献   

18.
This paper is concerned with the problem of hybrid output regulation for a class of linear impulsive systems with aperiodic jumps. Firstly, by leveraging time-dependent Lyapunov function technique and impulsive control theory, sufficient conditions for achieving output regulation are obtained in state feedback case. Then, the results are extended to error feedback case by constructing an impulsive observer. In this framework, two novel hybrid controllers are designed. Such controllers only need the discrete-time system state or error signal for feedback. The complete procedures for controller designs are also presented. Finally, two illustrative examples, including a numerical example and an LC circuit, are given to show the validity and applicability of the proposed control laws.  相似文献   

19.
This paper is concerned with stabilization of hybrid neural networks by intermittent control based on continuous or discrete-time state observations. By means of exponential martingale inequality and the ergodic property of the Markov chain, we establish a sufficient stability criterion on hybrid neural networks by intermittent control based on continuous-time state observations. Meantime, by M-matrix theory and comparison method, we show that hybrid neural networks can be stabilized by intermittent control based on discrete-time state observations. Finally, two examples are presented to illustrate our theory.  相似文献   

20.
Robust state estimation and fault diagnosis are challenging problems in the research into hybrid systems. In this paper a novel robust hybrid observer is proposed for a class of hybrid systems with unknown inputs and faults. Model uncertainties, disturbances and faults are represented as structured unknown inputs. The robust hybrid observer consists of a mode observer for mode identification and a continuous observer for continuous state estimation and mode transition detection. It is shown that the mode can be identified correctly and the continuous state estimation error is exponentially uniformly bounded. Robustness to model uncertainties and disturbances can be guaranteed for the hybrid observer by disturbance decoupling. Furthermore, the detectability and mode identifiability conditions are rigorously analyzed. On the basis of the robust hybrid observer, a robust fault detection and isolation scheme is presented also in the paper. Simulations of a hybrid four-tank system show the proposed approach is effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号