首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper investigates the periodic switching point controllability and stabilization of periodic switched Boolean control networks (PSBCNs), and applies the obtained results to the stabilization of deterministic asynchronous Boolean control networks (DABCNs). Firstly, using the algebraic state space representation of PSBCNs, a kind of periodic switching point controllability matrix is constructed, based on which, a necessary and sufficient condition is presented for the periodic switching point reachability and controllability of PSBCNs. Secondly, using the reachable set of PSBCNs, a constructive procedure is proposed to design time-variant state feedback controllers for the periodic switching point stabilization of PSBCNs. Finally, by converting the dynamics of DABCNs into the form of PSBCNs, the time-variant state feedback stabilization problem of DABCNs is solved.  相似文献   

2.
This paper investigates the set stability of probabilistic Boolean networks (PBNs) with switching topology. To deal with this problem, two novel concepts, set reachability and the largest invariant set family, are defined. By constructing an auxiliary system, the necessary and sufficient conditions for verifying set reachability are given and the calculation method for the largest invariant set family is obtained. Based on these two results, an equivalent condition of set stability is derived, which can be used to determine whether a PBN with switching topology can be stabilized to a given set. In addition, the design method of switching signal is proposed by combining the characteristic of the largest invariant set family, and a numerical example is reported to demonstrate the efficiency of presented approach.  相似文献   

3.
This paper studies two kinds of set stabilizability issues of switched Boolean control networks (SBCNs) by Ledley antecedence solution, that is, pointwise set stabilizability and set stabilizability under arbitrary switching signals. Firstly, based on the state transition matrix of SBCNs, the mode-dependent truth matrix is defined. Secondly, using the mode-dependent truth matrix in every step, a switching signal and the corresponding Ledley antecedence solutions are determined. Furthermore, a state feedback switching signal and a state feedback control are obtained for the pointwise set stabilizability. Thirdly, with the help of all mode-dependent truth matrices, the Ledley antecedence solutions are derived for a set of Boolean inclusions, which admits a state feedback control for the set stabilizability under arbitrary switching signals. Finally, an example is given to show the effectiveness of the proposed results.  相似文献   

4.
In this paper, a differential-inclusion-based MPC scheme is developed for the controller design for a discrete time nonlinear Markov jump system with nonhomogeneous transition probability. By adopting a differential-inclusion-based convex model predictive control mechanism, the nonlinear Markov jump system with nonhomogeneous transition probability is enclosed by a set of linear Markov jump systems. In this way, the controller design for the nonlinear Markov jump system can be solved via solving a set of linear Markov jump systems. Two numerical examples with different weighting parameters R are presented to illustrate the applicability of the results obtained.  相似文献   

5.
Stabilization and set stabilization of switched Boolean control networks are investigated by using flipping mechanism in this paper. Firstly, with the help of Warshall algorithm, an explicit criterion for the stabilization of switched Boolean control networks is derived. Secondly, the necessary and sufficient condition for the solvability of stabilization of switched Boolean control networks, by flipping some elements of perturbation set once, is presented. Thirdly, a search algorithm is proposed to calculate the minimum number of stabilization flipped nodes and what exactly they are. Furthermore, a necessary and sufficient condition is established for the solvability of set stabilization of switched Boolean control networks by flipping some elements of perturbation set once. Analogously, an algorithm is given to find the minimum number of set stabilization flipped nodes. Finally, examples are shown to demonstrate the feasibility of the above results.  相似文献   

6.
In this paper,we investigate the stability of the split-step theta(SST)method for a class of nonlinear regime-switching jump systems–neutral stochastic delay differential equations(NSDDEs)with Markov switching and jumps.As we know,there are few results on the stability of numerical solutions for NSDDEs with Markov switching and jumps.The purpose of this paper is to enrich conclusions in such respect.It first devotes to show that the trivial solution of the NSDDE with Markov switching and jumps is exponentially mean square stable and asymptotically mean square stable under some suitable conditions.If the drift coefficient also satisfies the linear growth condition,it then proves that the SST method applied to the NSDDE with Markov switching and jumps shares the same conclusions with the exact solution.Moreover,a numerical example is demonstrated to illustrate the obtained results.  相似文献   

7.
This paper investigates the controllability of Boolean control networks (BCNs) with impulsive effects while avoiding certain forbidden states. Using semi‐tensor product of matrices, the BCNs with impulsive effects can be converted into impulsive discrete‐time systems. Then, some necessary and sufficient conditions for the controllability are obtained. It is interesting to find that impulsive effects play an important role in the controllability of BCNs. Finally, an example is given to show the efficiency of the obtained results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The problem of state feedback stabilization of discrete-time stochastic processes under Markovian switching is considered. The jump Markovian switching is modeled by a discrete-time Markov chain, and the noise or stochastic environmental disturbance is modeled by a sequence of identically independently normally distributed random variables. Necessary and sufficient conditions based on linear matrix inequalities (LMI’s) for stochastic stability is obtained. The proposed control law for this stochastic stabilization result depends on the mode of the system as well as the environmental disturbances. The robustness results of such stability concepts against all admissible uncertainties are also investigated. An example is given to demonstrate the obtained results.  相似文献   

9.
In this paper, exponential synchronization for hybrid multi-weighted complex networks is studied via aperiodically intermittent control. Different from previous work, both Markov jump and reaction-diffusion effects are simultaneously considered into multi-weighted complex networks. By employing network split technique, graph theory, and Lyapunov method, several synchronization criteria are derived. These criteria show the effects of multiple weights, Markov jump, and reaction-diffusion on exponential synchronization. Furthermore, an application to Cohen–Grossberg neural networks is conducted, and the corresponding synchronization criterion is given. Finally, some numerical simulations are presented to show the effectiveness of the obtained theoretical results.  相似文献   

10.
A problem of state feedback stabilization of discrete-time stochastic processes under Markovian switching and random diffusion (noise) is considered. The jump Markovian switching is modeled by a discrete-time Markov chain. The control input is simultaneously applied to both the rate vector and the diffusion term. Sufficient conditions based on linear matrix inequalities (LMI's) for stochastic stability is obtained. The robustness results of such stability concept against all admissible uncertainties are also investigated. An example is given to demonstrate the obtained results.  相似文献   

11.
A problem of robust guaranteed cost control of stochastic discrete-time systems with parametric uncertainties under Markovian switching is considered. The control is simultaneously applied to both the random and the deterministic components of the system. The noise (the random) term depends on both the states and the control input. The jump Markovian switching is modeled by a discrete-time Markov chain and the noise or stochastic environmental disturbance is modeled by a sequence of identically independently normally distributed random variables. Using linear matrix inequalities (LMIs) approach, the robust quadratic stochastic stability is obtained. The proposed control law for this quadratic stochastic stabilization result depended on the mode of the system. This control law is developed such that the closed-loop system with a cost function has an upper bound under all admissible parameter uncertainties. The upper bound for the cost function is obtained as a minimization problem. Two numerical examples are given to demonstrate the potential of the proposed techniques and obtained results.  相似文献   

12.
This paper addresses the output tracking problem of switched Boolean networks (SBNs) via the semi-tensor product method, and presents a number of new results. Firstly, the concept of switching-output-reachability is proposed for SBNs, based on which, a necessary and sufficient condition is presented for the output tracking of SBNs under arbitrary open-loop switching signal. Secondly, a constructive procedure is proposed for the design of closed-loop switching signals for SBNs to track a constant reference signal. The study of an illustrative example shows that the obtained new results are very effective.  相似文献   

13.
A problem of quantized state feedback quadratic mean-square stabilization of discrete-time stochastic processes under Markovian switching and multiplicative noise is considered. A static quantizer is used in the feedback channel and the jump Markovian switching is modeled by a discrete-time Markov chain. The control input is simultaneously applied to both the rate vector and the diffusion term. It is shown that the coarsest quantization density that permits quadratic mean-square stabilization of this system is achieved with the use of a logarithmic quantizer, and the coarsest quantization density is determined by an algebraic Riccati equation, which is also the solution to a special linear stochastic Markovian switching control system. Also, sufficient conditions for exponential mean-square stabilization of such systems are also explored. An example is given to demonstrate the obtained results.  相似文献   

14.
In this paper, the problem of stochastic stability for a class of delayed neural networks of neutral type with Markovian jump parameters is investigated. The jumping parameters are modelled as a continuous-time, discrete-state Markov process. A sufficient condition guaranteeing the stochastic stability of the equilibrium point is derived for the Markovian jumping delayed neural networks (MJDNNs) with neutral type. The stability criterion not only eliminates the differences between excitatory and inhibitory effects on the neural networks, but also can be conveniently checked. The sufficient condition obtained can be essentially solved in terms of linear matrix inequality. A numerical example is given to show the effectiveness of the obtained results.  相似文献   

15.
This paper considers the event-triggered control design for the uniform sampled-data set stabilization of switched delayed Boolean control networks (SDBCNs). First, using the algebraic state space representation method, SDBCNs are converted into the equivalent algebraic form. Second, using the algebraic form, the uniform sampled-data reachable sets are constructed, based on which, a necessary and sufficient condition is obtained for the uniform sampled-data set stabilization of SDBCNs. Finally, the event-triggered mechanism is presented, and a sufficient condition is proposed to design the time-variant state feedback event-triggered controller for the uniform sampled-data set stabilization of SDBCNs.  相似文献   

16.
The authors prove a sufficient stochastic maximum principle for the optimal control of a forward-backward Markov regime switching jump diffusion system and show its connection to dynamic programming principle. The result is applied to a cash flow valuation problem with terminal wealth constraint in a financial market. An explicit optimal strategy is obtained in this example.  相似文献   

17.
A problem of state output feedback stabilization of discrete-time stochastic systems with multiplicative noise under Markovian switching is considered. Under some appropriate assumptions, the stability of this system under pure impulsive control is given. Further under hybrid impulsive control, the output feedback stabilization problem is investigated. The hybrid control action is formulated as a combination of the regular control along with an impulsive control action. The jump Markovian switching is modeled by a discrete-time Markov chain. The control input is simultaneously applied to both the stochastic and the deterministic terms. Sufficient conditions based on stochastic semi-definite programming and linear matrix inequalities (LMIs) for both stochastic stability and stabilization are obtained. Such a nonconvex problem is solved using the existing optimization algorithms and the nonconvex CVX package. The robustness of the stability and stabilization concepts against all admissible uncertainties are also investigated. The parameter uncertainties we consider here are norm bounded. Two examples are given to demonstrate the obtained results.  相似文献   

18.
The main objective of this paper is to study the stability and stabilization problems for a class of impulsive switched systems with inappropriate impulsive switching signals under asynchronous switching. Here, “inappropriate” means that the impulse jump moment may be inconsistent with the asynchronous switching moment or the system switching moment. And “asynchronous” implies that the switching of controller modes lags behind that of system modes. The hybrid case of stable or unstable subsystems combining with stable and unstable impulses is explored. A novel Lyapunov-like function is constructed, which is discontinuous at some special instants, including the switching instants, the instants when the system modes and filter modes are matched, and the impulse jump instants. Based on the novel multiple Lyapunov-like function, the sufficient conditions for the closed loop system to be globally uniformly exponentially stable (GUES) are obtained with admissible edge-dependent switching signals. Furthermore, by excogitating the state-feedback switching controller, the gain matrix of the controller can be obtained by solving the linear matrix inequalities. Finally, two numerical examples and simulation results are given to prove the effectiveness of our main results.  相似文献   

19.
This paper analyzes the stability of activation-inhibition Boolean networks with stochastic function structures. First, the activation-inhibition Boolean networks with stochastic function structures are converted to the form of logical networks by the method of semitensor product of matrices. Second, based on the obtained algebraic forms, we use matrices to denote the index set of possible logical operators and transition probabilities for activation-inhibition Boolean networks. Third, equivalence criterions are presented for the stabilities analysis of activation-inhibition Boolean networks with stochastic function structures. Finally, an example is given to verify the validity of the results.  相似文献   

20.
In this paper, the reachability realization of a switched linear discrete-time system, which is a collection of linear time-invariant discrete-time systems along with some maps for “switching” among them, is addressed. The main contribution of this paper is to prove that for a switched linear discrete-time system, there exists a basic switching sequence such that the reachable (controllable) state set of this basic switching sequence is equal to the reachable (controllable) state set of the system. Hence, the reachability (controllability) can be realized by using only one switching sequence. We also discuss the stabilizability of switched systems, and obtain a sufficient condition for stabilizability. Two numeric examples are given to illustrate the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号