首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dinoflagellates are the most ubiquitous luminescent protists in the marine environment and have drawn much attention for their crucial roles in marine ecosystems. Dinoflagellate bioluminescence has been applied in underwater target detection. The luminescent system of dinoflagellates is a typical luciferin–luciferase one. However, the excited‐state oxyluciferin is not the light emitter of dinoflagellate bioluminescence as in most luciferin–luciferase bioluminescent organisms. The oxyluciferin of bioluminescent dinoflagellates is not fluorescent, whereas its luciferin emits bright fluorescence with similar wavelength of the bioluminescence. What is the light emitter of dinoflagellate bioluminescence and what is the chemical process of the light emission like? These questions have not been answered by the limited experimental evidence so far. In this study, for the first time, the density functional calculation is employed to investigate the geometries and properties of luciferin and oxyluciferin of bioluminescent dinoflagellate. The calculated results agree with the experimental observations and indicate the luciferin or its analogue, rather than oxyluciferin, is the bioluminophore of dinoflagellate bioluminescence. A rough mechanism involving energy transfer is proposed for dinoflagellate bioluminescence.  相似文献   

2.
In the course of investigations on the possible involvement of the CIEEL (chemically initiated electron-exchange luminescence) mechanism in firefly bioluminescence, we have synthesized two novel firefly luciferin substrate analogues. D-Naphthylluciferin and D-quinolylluciferin were prepared by condensing D-cysteine with 2-cyano-6-hydroxynaphthalene and 2-cyano-6-hydroxyquinoline, respectively. These analogues are the first examples of bioluminescent substrates for firefly luciferase that do not contain a benzothiazole moiety. Firefly luciferase-catalyzed bioluminescence emission spectra revealed that compared to the normal yellow-green light of luciferin (lambda max = 559 nm), the emission from naphthylluciferin is significantly blue-shifted (lambda max = 524 nm); whereas quinolylluciferin emits orange-red light (lambda max = 608 nm). The fluorescence emission spectra, reaction pH optima, relative light yields, light emission kinetics and KM values of the analogues also were measured and compared to those of luciferin. Neither of the analogues produced the characteristic flash kinetics observed for the natural substrate. Instead, slower rise times to peak emission intensity were recorded. It appears that the formation of an intermediate from the analogue adenylates prior to the addition of oxygen is responsible for the slow rise times. The synthetic substrate analogues described here should be useful for future mechanistic studies.  相似文献   

3.
Firefly bioluminescence is produced via luciferin enzymatic reactions in luciferase. Luciferin has to be unceasingly replenished to maintain bioluminescence. How is the luciferin reproduced after it has been exhausted? In the early 1970s, Okada proposed the hypothesis that the oxyluciferin produced by the previous bioluminescent reaction could be converted into new luciferin for the next bioluminescent reaction. To some extent, this hypothesis was evidenced by several detected intermediates. However, the detailed process and mechanism of luciferin regeneration remained largely unknown. For the first time, we investigated the entire process of luciferin regeneration in firefly bioluminescence by density functional theory calculations. This theoretical study suggests that luciferin regeneration consists of three sequential steps: the oxyluciferin produced from the last bioluminescent reaction generates 2-cyano-6-hydroxybenzothiazole (CHBT) in the luciferin regenerating enzyme (LRE) via a hydrolysis reaction; CHBT combines with L-cysteine in vivo to form L-luciferin via a condensation reaction; and L-luciferin inverts into D-luciferin in luciferase and thioesterase. The presently proposed mechanism not only supports the sporadic evidence from previous experiments but also clearly describes the complete process of luciferin regeneration. This work is of great significance for understanding the long-term flashing of fireflies without an in vitro energy supply.  相似文献   

4.
The synthesis and bioluminescence of allyl-substituted luciferin derivatives as substrates for firefly luciferase are reported. The allylation of luciferins induced bathochromic shift (15–40?nm) of the bioluminescence emission. Upon combination with other chemical modifications for bioluminescence wavelength tuning, novel red emitting luciferin analogues were obtained with emission maxima at 685 and 690?nm.  相似文献   

5.
Abstract— The chemical steps and the products of the bioluminescent and chemiluminescent oxidations of firefly luciferin are elucidated. The colors of firefly bioluminescence can be explained in terms of different ionic excited states and spectral shifts due to changes in molecular environment. Firefly luciferase undergoes conformational changes during catalysis. There are two sites for light production per 100,000 mW. A regulatory mechanism involving dehydro-luciferin is proposed for control of firefly flashing.  相似文献   

6.
Beetle luciferases (including those of the firefly) use the same luciferin substrate to naturally display light ranging in color from green (lambda(max) similar 530 nm) to red (lambda(max) similar 635 nm). The original mechanism of bioluminescence color determination advanced by White and co-workers was based on the concept that the keto and enol tautomers of the emitter oxyluciferin produce red and green light, respectively. Alternatively, McCapra proposed that color variation is associated with conformations of the keto form of excited-state oxyluciferin. We have prepared the adenylate of D-5,5-dimethylluciferin and shown that it is transformed into the putative emitter 5,5-dimethyloxyluciferin in bioluminescence reactions catalyzed by luciferases from Photinus pyralis and the green-emitting click beetle. 5,5-Dimethyloxyluciferin is constrained to exist in the keto form and fluoresces in the red. However, bioluminescence spectra revealed that green light emission was produced by the firefly enzyme and red light was observed with the click beetle protein. These results, augmented with steady-state kinetic studies, may be taken as the first experimental support for McCapra's mechanism of firefly bioluminescence color or any other proposal that requires only a single keto form of oxyluciferin.  相似文献   

7.
Five new firefly luciferin ( 1 ) analogues were synthesized and their light emission properties were examined. Modifications of the thiazoline moiety in 1 were employed to produce analogues containing acyclic amino acid side chains ( 2 – 4 ) and heterocyclic rings derived from amino acids ( 5 and 6 ) linked to the benzothiazole moiety. Although methyl esters of all of the synthetic derivatives exhibited chemiluminescence activity, only carboluciferin ( 6 ), possessing a pyrroline‐substituted benzothiazole structure, had bioluminescence (BL) activity (λmax=547 nm). Results of bioluminescence studies with AMP‐carboluciferin (AMP=adenosine monophosphate) and AMP‐firefly luciferin showed that the nature of the thiazoline mimicking moiety affected the adenylation step of the luciferin–luciferase reaction required for production of potent BL. In addition, BL of 6 in living mice differed from that of 1 in that its luminescence decay rate was slower.  相似文献   

8.
Red‐shifted bioluminescent emitters allow improved in vivo tissue penetration and signal quantification, and have led to the development of beetle luciferin analogues that elicit red‐shifted bioluminescence with firefly luciferase (Fluc). However, unlike natural luciferin, none have been shown to emit different colors with different luciferases. We have synthesized and tested the first dual‐color, far‐red to near‐infrared (nIR) emitting analogue of beetle luciferin, which, akin to natural luciferin, exhibits pH dependent fluorescence spectra and emits bioluminescence of different colors with different engineered Fluc enzymes. Our analogue produces different far‐red to nIR emission maxima up to λmax=706 nm with different Fluc mutants. This emission is the most red‐shifted bioluminescence reported without using a resonance energy transfer acceptor. This improvement should allow tissues to be more effectively probed using multiparametric deep‐tissue bioluminescence imaging.  相似文献   

9.
A novel luciferin from a bioluminescent Siberian earthworm Fridericia heliota was recently described. In this study, the Fridericia oxyluciferin was isolated and its structure elucidated. The results provide insight into a novel bioluminescence mechanism in nature. Oxidative decarboxylation of a lysine fragment of the luciferin supplies energy for light generation, while a fluorescent CompX moiety remains intact and serves as the light emitter.  相似文献   

10.
Abstract— The 5-methyl analog of firefly oxyluciferin, two isomeric O-methyl ether derivatives of it and an O, O Ó-dimethyl ether derivative were synthesized and their UV absorption and fluorescence emission spectra were determined. Comparisons of the emission data with the emission wavelength in bioluminescence indicate that the mono-anions of firefly oxyluciferin are candidates for the light-emitters in bioluminescence. Further, we have found that the chemiluminescence of active esters of firefly luciferin produces (from the keto form of oxyluciferin) only red light emission under a variety of conditions; a yellow-green light emission (from the enolic forms of the oxyluciferin product) could not be elicited.  相似文献   

11.
New firefly luciferin analogs of the 4,4′-substituted biphenyl-type were synthesized. One analog with a 4′-dimethylamino group possessed bioluminescence activity, emitting near-infrared biological window light at 675 nm suitable for deep-site bioimaging of living animals. The chemiluminescence light-emission maximum of the corresponding methyl ester of the bioluminescence active analog was 500 nm, implying that biphenyl and thiazolinone rings in the light emitter might be placed in a coplanar conformation at the polar luciferase active site.  相似文献   

12.
Bacterial bioluminescence (BL) has been successfully applied in water‐quality monitoring and in vivo imaging. The attention of researchers has been attracted for several decades, but the mechanism of bacterial BL is still largely unknown due to the complexity of the multistep reaction process. Debates mainly focus on three key questions: How is the bioluminophore produced? What is the exact chemical form of the bioluminophore? How does the protein environment affect the light emission? Using quantum mechanics (QM), combined QM and molecular mechanics (QM/MM) and molecular dynamic (MD) calculations in gas‐phase, solvent and protein environments, the entire process of bacterial BL was investigated, from flavin reduction to light emission. This investigation revealed that: 1) the chemiluminescent decomposition of flavin peroxyhemiacetal does not occur through the intramolecular chemical initiated electron exchange luminescence (CIEEL) or the “dioxirane” mechanism, as suggested in the literature. Instead, the decomposition occurs according to the charge‐transfer initiated luminescence (CTIL) mechanism for the thermolysis of dioxetanone. 2) The first excited state of 4a‐hydroxy‐4a,5‐dihydroFMN (HFOH) was affirmed to be the bioluminophore of bacterial BL. This study provides details regarding the mechanism by which bacterial BL is produced and is helpful in understanding bacterial BL in general.  相似文献   

13.
Among all bioluminescent organisms, the firefly is the most famous, with a high luminescent efficiency of 41%, which is widely used in the fields of biotechnology, biomedicine and so on. The entire bioluminescence (BL) process involves a series of complicated in-vivo chemical reactions. The BL is initiated by the enzymatic oxidation of luciferin (LH2). However, the mechanism of the efficient spin-forbidden oxygenation is far from being totally understood. Via MD simulation and QM/MM calculations, this article describes the complete process of oxygenation in real protein. The oxygenation of luciferin is initiated by a single electron transfer from the trivalent anionic LH2 (L3−) to O2 to form 1[L•2−…O2•−]; the entire reaction is carried out along the ground-state potential energy surface to produce the dioxetanone (FDO) via three transition states and two intermediates. The low energy barriers of the oxygenation reaction and biradical annihilation involved in the reaction explain this spin-forbidden reaction with high efficiency. This study is helpful for understanding the BL initiation of fireflies and the other oxygen-dependent bioluminescent organisms.  相似文献   

14.
Unlike the enchanting yellow‐green flashes of light produced on warm summer evenings by Photinus pyralis, the most common firefly species in North America, the orange lights of Photinus scintillans are infrequently observed. These Photinus species, and likely all bioluminescent beetles, use the same substrates beetle luciferin, ATP and oxygen to produce light. It is the structure of the particular luciferase enzyme that is the key to determining the color of the emitted light. We report here the molecular cloning of the P. scintillans luc gene and the expression and characterization of the corresponding novel recombinant luciferase enzyme. A comparison of the amino acid sequence with that of the highly similar P. pyralis enzyme and subsequent mutagenesis studies revealed that the single conservative amino acid change tyrosine to phenylalanine at position 255 accounted for the entire emission color difference. Additional mutagenesis and crystallographic studies were performed on a H‐bond network, which includes the position 255 residue and five other stringently conserved beetle luciferase residues, that is proximal to the substrate/emitter binding site. The results are interpreted in the context of a speculative proposal that this network is key to the understanding of bioluminescence color determination.  相似文献   

15.
The bioluminescent system of the univalve shell Latia neritoides exhibits a luciferin-luciferase reaction. We study the enol formate structure of Latia luciferin, which is expected to be important for luminescent activity. The Latia luciferin analogues with an enol substituted benzoate moiety were synthesized and their bioluminescent activity was measured. The Latia luciferin benzoate analogues delay emission for natural luciferin in bioluminescence, indicating that the Latia bioluminescent activity can be controlled by the design of the enol ester.  相似文献   

16.
Synthetic nIR emitting luciferins can enable clearer bioluminescent imaging in blood and tissue. A limiting factor for all synthetic luciferins is their reduced light output with respect to D-luciferin. In this work we explore a design feature of whether rigidification of an exceptionally red synthetic luciferin, infraluciferin, can increase light output through a reduction in the degrees of freedom of the molecule. A rigid analogue pyridobenzimidazole infraluciferin was prepared and its bioluminescence properties compared with its non-rigid counterpart benzimidazole infraluciferin, luciferin, infraluciferin and benzimidazole luciferin. The results support the concept that synthetic rigidification of π-extended luciferins can increase bioluminescence activity while maintaining nIR bioluminescence.  相似文献   

17.
Bioluminescence (BL) is an amazing natural phenomenon whose visible light is produced by living organisms. Due to its high sensitivity, high selectivity and high signal‐to‐noise ratio, BL has been applied broadly in biotechnology and biomedical fields. However, for centuries, we can only receive some sporadic and static information from experimental observations, the mechanism of most BL is unknown. In the past 14 years, we have been performing theoretical study on all kinds of bioluminescent systems, and have uncovered the mechanism and details of several BLs. Here as an example, we qualitatively introduce our theoretical study of firefly BL in this account.  相似文献   

18.
After more than one‐half century of investigations, the mechanism of bioluminescence from the FMNH2 assisted oxygen oxidation of an aliphatic aldehyde on bacterial luciferase continues to resist elucidation. There are many types of luciferase from species of bioluminescent bacteria originating from both marine and terrestrial habitats. The luciferases all have close sequence homology, and in vitro, a highly efficient light generation is obtained from these natural metabolites as substrates. Sufficient exothermicity equivalent to the energy of a blue photon is available in the chemical oxidation of the aldehyde to the corresponding carboxylic acid, and a luciferase‐bound FMNH‐OOH is a key player. A high energy species, the source of the exothermicity, is unknown except that it is not a luciferin cyclic peroxide, a dioxetanone, as identified in the pathway of the firefly and the marine bioluminescence systems. Besides these natural substrates, variable bioluminescence properties are found using other reactants such as flavin analogs or aldehydes, but results also depend on the luciferase type. Some rationalization of the mechanism has resulted from spatial structure determination, NMR of intermediates and dynamic optical spectroscopy. The overall light path appears to fall into the sensitized class of chemiluminescence mechanism, distinct from the dioxetanone types.  相似文献   

19.
The chemistry of firefly bioluminescence is important for numerous applications in biochemistry and analytical chemistry. The emitter of this bioluminescent system, firefly oxyluciferin, is difficult to handle. The cause of its lability was clarified while its synthesis was reinvestigated. A side product was identified and characterized by NMR spectroscopy and X‐ray crystallography. The reason for the lability of oxyluciferin is now ascribed to autodimerization of the coexisting enol and keto forms in a Mannich‐type reaction.  相似文献   

20.
The chemistry of firefly bioluminescence is important for numerous applications in biochemistry and analytical chemistry. The emitter of this bioluminescent system, firefly oxyluciferin, is difficult to handle. The cause of its lability was clarified while its synthesis was reinvestigated. A side product was identified and characterized by NMR spectroscopy and X‐ray crystallography. The reason for the lability of oxyluciferin is now ascribed to autodimerization of the coexisting enol and keto forms in a Mannich‐type reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号