首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Undoped and p- and n-doped AgSbX2 (X=Se and Te) materials were synthesized by direct fusion technique. The structural properties were investigated by X-ray diffraction and SEM microscopy. The electrical conductivity, thermal conductivity and Seebeck coefficient have been measured as a function of temperature in the range from 300 to 600 K.To enlighten electron transport behaviours observed in AgSbSe2 and AgSbTe2 compounds, electronic structure calculations have been performed by the Korringa-Kohn-Rostoker method as well as KKR with coherent potential approximation (KKR-CPA) for ordered (hypothetical AgX and SbX as well as AgSbX2 approximates) and disordered systems (Ag1−xSbxX), respectively. The calculated density of states in the considered structural cases shows apparent tendencies to opening the energy gap near the Fermi level for the stoichiometric AgSbX2 compositions, but a small overlap between valence and conduction bands is still present. Such electronic structure behaviour well agrees with the semimetallic properties of the analyzed samples.  相似文献   

2.
The impact of interfaces and heterojuctions on the electronic and thermoelectric transport properties of materials is discussed herein. Recent progress in understanding electronic transport in heterostructures of 2D materials ranging from graphene to transition metal dichalcogenides, their homojunctions (grain boundaries), lateral heterojunctions (such as graphene/MoS2 lateral interfaces), and vertical van der Waals heterostructures is reviewed. Work on thermopower in 2D heterojunctions, as well as their applications in creating devices such as resonant tunneling diodes (RTDs), is also discussed. Last, the focus turns to work in 3D heterostructures. While transport in 3D heterostructures has been researched for several decades, here recent progress in theory and simulation of quantum effects on transport via the Wigner and non‐equilibrium Green's functions approaches is reviewed. These simulation techniques have been successfully applied toward understanding the impact of heterojunctions on transport properties and thermopower, which finds applications in energy harvesting, and electron resonant tunneling, with applications in RTDs. In conclusion, tremendous progress has been made in both simulation and experiments toward the goal of understanding transport in heterostructures and this progress will soon be parlayed into improved energy converters and quantum nanoelectronic devices.  相似文献   

3.
Recently, fabricating type-II vertical van der Waals (vdWs) heterostructure is a promising material for hydrogen production. The absorption capability, charge density distributions, band alignments and electronic properties of the monolayers and heterostructures are systematically investigated using computational studies. Using ab initio molecular dynamics, binding energy and phonon calculations, the stability of the heterostructures are verified. Both heterostructures are type-II materials, which can increase the separation of charge carriers. Moreover, the charge density difference and the potential drop across the interface of MSe2/BSe creates a high built-in electric field that can prevent the recombination of charge carriers. We found that the visible-light optical properties of both heterostructures are much enhanced with suitable bandgap energy for water splitting. The band alignment suggests that the heterostructures straddle water redox potentials in acid solutions (0 < pH < 7). Our study predicted that MSe2/BSe vdW heterostructures have great potential for photocatalytic hydrogen production.  相似文献   

4.
The electronic, mechanical and dielectric properties of lateral MoS2/SiC heterobilayer are investigated using first principles calculations. Among various stacking conformations, the energetically favorable stackings namely AA2 and AB′1 have been considered in the present study. The band gap of the heterobilayer shows reduction as compared to constituent monolayers which also remains stacking dependent. The electronic band-gap is further tunable by applying mechanical strain and perpendicular electric field that rendered heterostructures from semiconductor to metal at critical value of applied strain/field. The stacking of heterobilayer strongly influence its mechanical properties e.g. ultimate tensile strength of considered two favorable stacking differ by more than 50%; the ultimate tensile strain of 17% and 21% respectively has been calculated for two different stackings. The static dielectric constant also shows tunability on heterostructuring the constituent monolayers as well as applying strain and field. These tunable properties of MoS2/SiC may be useful for the device applications at nanoscale.  相似文献   

5.
The La0.8Sr0.2MnO3 (LSMO)/ TiO2 heterostructures with different thicknesses of the LSMO films were successfully synthesized using the RF magnetron sputtering technique. Excellent rectifying characteristics are presented in all heterostructures in a wide temperature range. The differences of the diffusive potentials for three heterojunctions are very little at 300 K. The samples exhibit a high resistance that plays an important role on their rectifying properties. The diffusive potential decreases with increasing temperature. The result is attributed to both the reduction of the thickness of the deletion layer due to the thermal diffusion and the modulation of the interfacial electronic structure of the heterostructures. The metal-insulator (M-I) transition is observed clearly from the single LSMO layers and the LSMO/ TiO2 p-n heterojunctions.  相似文献   

6.
利用密度泛函理论结合玻尔兹曼输运理论计算体相和双层二维MoS2/MoSe2异质材料的热电性质. 计算表明,体相MoS2/MoSe2异质材料的热电性质比之于MoSe2会有较大程度的提高. 该异质材料热电性质的提高主要源于异质材料本身带隙的减小以及层间的范德瓦尔斯相互作用. 二维MoS2/MoSe2异质材料存在热电应用的可能性.  相似文献   

7.
ABSTRACT

The inverse Heusler alloys such as Ti2CoSi, Mn2CoAl and Cr2ZnSi were studied in the framework of density functional theory using FP-LAPW linearised augmented plane wave method in order to determine the different physical properties such as structural, electronic, magnetic and thermoelectric. The generalised gradient approximation (GGA) was used to treat the exchange–correlation energy and the Beck-Johnson (mBJ) approach was used to calculate the electronic properties. In all studied compounds, the stable type Hg2CuTi was energetically more favourable than Cu2MnAl type structure. The results show that two compounds (Ti2CoSi and Mn2CoAl) are both ferromagnetic (FM) while Cr2ZnSi is antiferromagnetic (AFM). The compounds Ti2CoSi and Mn2CoAl have a total magnetic moment of 3 and 2?μB, respectively, whereas the Cr2ZnSi alloy has a total magnetic moment equals zero. The Ti2CoSi, Mn2CoAl and Cr2ZnSi compounds exhibit half-metallic (HM) character with 100% spin polarisation at the Fermi level. Finally, the semi-classical Boltzmann theory implicit in the BoltzTraP code was used to calculate the electronic transport coefficients such as thermal and electrical conductivity, the Seebeck coefficient and the factor of merit.  相似文献   

8.
Recently, direct Z-scheme heterostructures have attracted much attention because of their outstanding electronic properties and excellent photocatalytic performance. In this article, the electronic, optical and photocatalytic properties of SnC/PtSe2 heterojunction are systematically explored via first-principles calculations. Evidence suggests that a Type-Ⅱ band alignment as well as an indirect bandgap of 1.35 eV can be observed in the SnC/PtSe2 heterojunction. The combined influence of the built-in electric field from SnC to PtSe2 and the band bending causes a Z-scheme carrier migration mechanism. At biaxial strains of −3%–5%, the band edge positions of the heterojunction are able to cross the redox potential of water. The light absorption coefficient of 4.21 × 105 cm−1 and the energy conversion efficiency of 42.32% demonstrate that the photon energy can be utilized by the heterostructure efficiently. Furthermore, the absorption coefficient in the visible range can be significantly increased under tensile strain. Hence, there are reasons to believe that SnC/PtSe2 heterostructure has tremendous potential for application in the field of photocatalytic water decomposition.  相似文献   

9.
《Current Applied Physics》2020,20(10):1097-1102
Magnesium based spinel chalcogenides MgY2Z4 (Z = S and Se) have recently become a focus of renewed research interest owing to their high magnesium mobility; making them potential candidates for Mg batteries. In addition, the existence of a >1 eV band gaps in MgY2Z4 compounds also make them interesting for opto-electronic device operating in the visible to UV range of electromagnetic spectrum. Our calculations indicate that the electronic properties computed using the mBJ-LDA + SOC are in good agreement with earlier DFT calculations. The optical properties of the two compounds are examined as a function of incident photon energy, which indicate that these materials can be utilized in optical devices operating in visible and UV region of electromagnetic spectrum. The transport properties are also computed using BoltzTrap code where the variation of electrical conductivity, thermal conductivity and Seebeck coefficient with chemical potential and temperature is examined.  相似文献   

10.
It has recently become possible to grow epitaxial Si/CoSi2/Si semiconductor-metal-semiconductor heterostructures of almost perfect crystalline quality. Electronic transport in the plane of the metal film (parallel transport) is investigated by the extensive studies of resistivity and superconducting properties of these films. The sharp influence of film thickness on both phenomena is presented and its physical origin is briefly discussed. The transfer of hot electrons emitted by the top Siepi/PrmCoSi2 diode to the Sibulk/CoSi2 through the metal film (perpendicular transport) is studied. Experimental data strongly favor the hypothesis of ballistic transport with a ballistic mean free path close to the one deduced from resistivity measurements.  相似文献   

11.
吴木生  袁文  刘刚  王燕  叶志清 《光子学报》2013,42(2):156-160
采用密度泛函理论框架下的第一性原理方法计算了ZnO/GaN核壳异质结的电子结构和光学特性.计算结果表明:[10 10]和[11 20]晶面的异质结在带隙边缘价带顶和导带底的电子态密度各自主要由氮原子和锌原子贡献.以[10 10]晶面为侧面的异质结结构的介电函数虚部(ε2)的曲线具有相似的特征,都是价带的氮原子到导带锌原子的跃迁,但峰位依赖于核层数和壳层数的不同而有所偏移.相对地,以[11 20]晶面为侧面的结构,其ε2的曲线与[10 10]晶面的情况有着很大的差别,其出现了一个由镓原子与氮原子之间的跃迁形成的峰.因此,可以通过控制异质结的晶面来实现对其光学特性的调控.这种新型异质结将在发光器件、光电太阳能电池、生物探测等方面具有一定的应用价值.  相似文献   

12.
ABSTRACT

In this work, the electronic structure, optical properties and thermoelectric properties of the GeI2 monolayer are calculated by the first principles with the Boltzmann transport equation. The monolayer is calculated as an indirect band gap semiconductor with an indirect band gap of a value 2.19?eV. This GeI2 monolayer is good for absorbing low-energy photons, and it is insensitive to high-energy photons. The material is stable at temperatures up to 600?K, so we calculated the thermal conductivity (KL), Seebeck coefficient (S), power factor (PF) and thermoelectric figure of merit (ZT) of the GeI2 monolayer at various carrier concentrations from 300 to 600?K. Due to the lower group velocity, the GeI2 monolayer has a lower thermal conductivity of 0.48?W/m?K at 300K. In P-type doping, the power factor can up to 0.11?mW/m?K2, and its ZT value is 4.04 at 600?K of the GeI2 monolayer, indicating that the GeI2 monolayer is a potential thermoelectric material.  相似文献   

13.
The crystal structure and electromagnetic properties as well as thermal stability of the A-site ordered PrBaMn2O6 manganites have been investigated. These samples have been prepared by using ‘two-steps’ synthesis mode. They have tetragonal structure with no tilt of MnO6 octahedra and show ferromagnetic metal to paramagnetic semiconductor transition. The most significant structural feature of the A-site ordered manganites is that the MnO2 sublattice is sandwiched by two types of rock-salt layers PrO and BaO. The different degree of Pr and Ba ions in the A-sublattice is revealed. The A-site ordered PrBaMn2O6 sample with maximum degree of the A-site order demonstrates ferromagnetic metallic to paramagnetic insulating transition with the Curie point ∼320 K. The A-site disordered Pr0.50Ba0.50MnO3 sample is ferromagnetic metal below TC≈140 K. The cation order in these compounds is stable in air up to 1300 °C. For the partly A-site ordered samples the magnetic and electronic phase separation is observed. The magnetotransport properties of the A-site ordered manganites treated under different conditions are discussed in terms of the superexchange interactions and A-site order degree.  相似文献   

14.
《Current Applied Physics》2015,15(7):839-843
We present results on the transport properties of the half-metallic ferromagnetic Heusler alloys Co2CrAl and Co2CrGa in the temperature range from 4 to 900 K. The peculiarities of the resistivity and the absolute differential thermoelectric power are considered within a two-current model of conductivity, taking into account the energy gap at the Fermi level in the electronic spectrum of alloys for electrons with spin opposite to the direction of the magnetization vector.  相似文献   

15.
《Physics letters. A》2020,384(21):126532
Based on the first principles calculations, we have systematically investigated the electronic structures of Cu2Si/C2N van der Waals (vdW) heterostructures. We discovered that the electronic structures of Cu2Si and C2N monolayers are preserved in Cu2Si/C2N vdW heterostructures. There is a transition from the n-type Schottky contact to Ohmic contact when the interfacial distance decreases from 4.4 to 2.7 Å, which indicates that the Schottky barrier can be tuned effectively by the interfacial distance. Meanwhile, we find that the carrier concentration between the Cu2Si and C2N interfaces in the vdW heterostructures can be tuned. These findings suggest that the Cu2Si/C2N vdW heterostructure is a promising candidate for application in future nanoelectronics and optoelectronics devices.  相似文献   

16.
李宗良  李怀志  马勇  张广平  王传奎 《中国物理 B》2010,19(6):67305-067305
A first-principles computational method based on the hybrid density functional theory is developed to simulate the electronic transport properties of oligomeric phenylene ethynylene molecular junctions with H2O molecules accumulated in the vicinity as recently reported by Na {\it et al.} [\wx{Nanotechnology}{18} 424001 (2007)]. The numerical results show that the hydrogen bonds between the oxygen atoms of the oligomeric phenylene ethynylene molecule and H2O molecules result in the localisation of the molecular orbitals and lead to the lower transition peaks. The H2O molecular chains accumulated in the vicinity of the molecular junction can not only change the electronic structure of the molecular junctions, but also open additional electronic transport pathways. The obvious influence of H2O molecules on the electronic structure of the molecular junction and its electronic transport properties is thus demonstrated.  相似文献   

17.
Using pseudo-potential plane-wave method based on the density functional theory in conjunction with the generalized gradient approximation, structural parameters, electronic structures, elastic stiffness and thermal properties of M2PC, with M=V, Nb, Ta, were studied. The optimized zero pressure geometrical parameters are in good agreement with the available results. Pressure effect, up to 20 GPa, on the lattice parameters was investigated. Electronic properties are studied throughout the calculation of densities of states and band structures. The elastic constants and their pressure dependence were predicted using the static finite strain technique. We performed numerical estimations of the bulk modulus, shear modulus, Young's modulus, Poisson's ratio and average sound velocity for ideal polycrystalline M2PC aggregates in framework of the Voigt-Reuss-Hill approximation. We estimated the Debye temperature and the theoretical minimum thermal conductivity of M2PC.  相似文献   

18.
王晓坡  宋渤  吴江涛  刘志刚 《物理学报》2010,59(10):7158-7163
采用反转法计算得到了O2-CO2混合气体新的势能参数.在此基础上,根据分子动力学理论,计算了混合气体在零密度下的输运性质,包括黏度系数、热扩散系数和热扩散因子,计算的温度范围为273.15—3273.15 K.与实验值比较表明,计算结果可以满足实际工程应用.  相似文献   

19.
《Physics letters. A》2014,378(26-27):1867-1870
First-principles calculations have been conducted to study the structural, dielectric, and vibrational properties of ferroelectric and paraelectric BaAl2O4. High-frequency and static dielectric constants, and phonon frequencies at the Brillouin zone center are reported. Both BaAl2O4 polymorphs are promising infrared-transparent materials due to their low electronic dielectric constants. The ferroelectric and paraelectric BaAl2O4 have much smaller permittivity compared to the classical ferroelectric materials. From an atomic nanostructure standpoint, the abnormally low permittivity of BaAl2O4 polymorphs is mainly related to low coordination numbers of Ba (9) and Al (4).  相似文献   

20.
Sitting at the intersection of spintronics and thermoelectricity, research investigating the coupling of thermoelectric, magnetic, and electrical transport properties in materials has recently found that the ferromagnetic Heusler alloys are the ideal testbeds. These materials have attracted a lot of attention due to their useful magnetotransport properties and the possibility of tailoring these properties by modifying their composition or producing heterostructures. With the diverse range of interesting phenomena in the Heusler alloys, ferromagnetic Heusler alloys are also ideal candidates for engineering spin caloritronic devices that can take advantage of the interplay of the physics of heat flow, magnetism, and electric potential. The fundamental physical concepts important to spin-dependent thermoelectrics research are introduced and recent studies of several ferromagnetic Heusler compounds are reviewed, highlighting some exceptional latest experiments on half-metallic Co2TiSn and the ferromagnetic Weyl semimetal Co2MnGa. Furthermore, the potential to generate useful magnetothermoelectric voltages in electronic devices based on the anomalous Nernst effect is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号