首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactor performance of bubbling fluidized bed (BFB) and turbulent fluidized bed (TFB) was carefully examined and systematically compared using catalytic ozone decomposition as a model reaction, based on a complete mapping of local flow structures and spatial distributions of ozone conversion and solids holdup. TFB clearly has a higher conversion and shows better reactor performance than BFB as a result of the vigorously turbulent flow and the relatively homogeneous gas–solids mixing in TEB. Besides, the intensive interaction between gas and solids in TFB leads to greater gas–solids contact efficiency of TFB over that of BFB. Due to gas bypassing and backmixing caused by bubbling behaviours and two-phase structure, BFB deviates significantly from a plug flow reactor and sometimes from a continuously stirred tank reactor. The flow structures essentially dictate the reactor performance in the low-velocity fluidized beds.  相似文献   

2.
This paper investigated the effect of Gaussian distribution width, average particle diameter, particle loading, and the tapered angle on minimum fluidization velocity (Umf) by conducting extensive experiments in tapered fluidized beds. Three powders with Gaussian size distribution and different distribution widths were used in the experiments. An increase in Umf with increasing the average particle diameter, particle loading, and the tapered angle was observed. There was also a nonmonotonic behavior of Umf as the Gaussian distribution width increased. An empirical correlation including dimensionless groups for predicting Umf in tapered beds was developed in which the effect of distribution width was considered. The proposed correlation predictions were in good agreement with the experimental data, with a maximum deviation of 16.5% and average and standard deviations of, respectively, 6.4% and 7.4%. The proposed correlation was also compared with three earlier models, and their accuracy was discussed.  相似文献   

3.
4.
L-valve is often used as a non-mechanical valve for the circulation of solids in gas–solids fluidized bed (GSFB) due to its advantages in simple construction and easy control. The information on solids circulation rate as well as the hydrodynamics performance of the CFB with L-valve is of great importance for its better control and design. This paper proposes a Eulerian-Eulerian approach based numerical model integrating the computational fluid dynamics (CFD) with turbulent model, the kinetic theory of granular flow (KTGF) and the drag model, thus the solids circulation rate and the local phase velocity as well as solids volume fraction can be predicted simultaneously. With this model, the hydrodynamics performance of the full loop GSCFB with a L-valve is analyzed in detail. It is found that the drag model affects the simulation significantly and the (energy minimization multiscale) EMMS method shows good performance in the full-loop simulation of GSCFB.  相似文献   

5.
6.
This work reviews methods for time-series analysis for characterization of the dynamics of gas–solid fluidized beds from in-bed pressure measurements for different fluidization regimes. The paper covers analysis in time domain, frequency domain, and in state space. It is a follow-up and an update of a similar review paper written a decade ago. We use the same pressure time-series as used by Johnsson et al. (2000). The paper updates the previous review and includes additional methods for time-series analysis, which have been proposed to investigate dynamics of gas–solid fluidized beds. Results and underlying assumptions of the methods are discussed.  相似文献   

7.
The gas–liquid–solid mini fluidized bed (GLSMFB) combines the advantages of fluidized bed and micro-reactor, and meets the requirements for safety and efficiency of green development of process industry. However, there are few studies on its flow performance and no studies on its mass and heat transfer performance. In this paper, the characteristics of gas–liquid mass transfer in a GLSMFB were studied in order to provide basic guidance for the study of GLSMFB reaction performance and application. Using CO2 absorption by NaOH as the model process, the gas–liquid mass transfer performance of GLSMFB was investigated. The results show that the liquid volumetric mass transfer coefficient and the gas–liquid interfacial area both increase with the increase of the superficial gas velocity within the experimental parameter range under the same given superficial liquid velocity. At the same ratio of superficial gas to liquid velocity, the liquid volumetric mass transfer coefficient increases with the increase of the superficial liquid velocity. Fluidized solid particles strengthen the liquid mass transfer process, and the liquid volumetric mass transfer coefficient is about 13% higher than that of gas–liquid mini bubble column.  相似文献   

8.
Particle charge density is vitally important for monitoring electrostatic charges and understanding particle charging behavior in fluidized beds. In this paper, a dual-material probe was tested in a gas–solid fluidized bed for measuring the charge density of fluidized particles. The experiments were conducted in a two-dimensional fluidized bed with both single bubble injection and freely bubbling, at various particle charge densities and superficial gas velocities. Uniformly sized glass beads were used to eliminate complicating factors at this early stage of probe development. Peak currents, extracted from dynamic signals, were decoupled to determine charge densities of bed particles, which were found to be qualitatively and quantitatively consistent with charge densities directly measured by Faraday cup from the freely bubbling fluidized bed. The current signals were also decoupled to estimate bubble rise velocities, which were found to be in reasonable agreement with those obtained directly by analyzing video images.  相似文献   

9.
In the processes involving the movement of solid particles, acoustic emissions are caused by particle friction, collision and fluid turbulence. Particle behavior can therefore be monitored and characterized by assessing the acoustic emission signals. Herein, extensive measurements were carried out by microphone at different superficial gas velocities with different particle sizes. Acoustic emission signals were processed using statistical analysis from which the minimum fluidization velocity was determined from the variation of standard deviation, skewness and kurtosis of acoustic emission signals against superficial gas velocity. Initial minimum fluidization velocity, corresponding to onset of fluidization of finer particles in the solids mixture, at which isolated bubbles occur, was also detected by this method. It was shown that the acoustic emission measurement is highly feasible as a practical method for monitoring the hydrodynamics of gas–solid fluidized beds.  相似文献   

10.
Geldart-A fluidized beds of fine particles experience a jamming transition between a fluid-like state and a solid-like state at a certain superficial gas velocity, that depends on the relative strength of interparticle attractive forces with respect to particle weight, lnterparticle forces provide the bed with a certain tensile strength in the jammed state. In the work presented here we analyze the behavior of a fluidized bed of magnetic particles subjected to an externally applied magnetic field, which contributes to enhance interparticle forces. The importance of the magnetic contribution to interparticle forces is measured by the changes in the tensile strength and the superficial gas velocity at the jamming transition. The link of the field orientation with the microstructure of the bed is discussed,  相似文献   

11.
Dynamics of fine particles in liquid-solid fluidized beds   总被引:1,自引:0,他引:1  
On the basis of the Local Equilibrium Model (LEM), fine particles with large Richardson-Zaki exponent n show, under certain conditions during bed expansion and collapse, different dynamic behavior from particles with small n. For an expansion process there may be a concentration discontinuity propagating upward from the distributor, and, on the contrary, for a collapse process there may be a progressively broadening and upward-propagating continuous transition zone instead of discontinuity. The predictions of the bed height variation and the discontinuity trace have been validated experimentally.  相似文献   

12.
Long liquid slugs reaching a length of several hundreds of pipe diameter may appear when transporting gas and liquid in horizontal or nearly horizontal pipelines. These long slugs may cause system vibration, separator flooding, and operational problems for the downstream processing facilities. Although mainly short hydrodynamic slugs have been observed in offshore gas and oil production fields over the past years, the appearance of the long slugs is becoming more common as many production fields are now more mature and reach end of field life, giving reduced production rates and reduced operational pressure.  相似文献   

13.
The orientation of cylindrical particles in a gas–solid circulating fluidized bed was investigated by establishing a three-dimensional Euler–Lagrange model on the basis of rigid kinetics, impact kinetics and gas–solid two-phase flow theory. The resulting simulation indicated that the model could well illustrate the orientation of cylindrical particles in a riser during fluidization. The influences of bed structure and operation parameters on orientation of cylindrical particles were then studied and compared with related experimental results. The simulation results showed that the majority of cylindrical particles move with small nutation angles in the riser, the orientation of cylindrical particles is affected more obviously by their positions than by their slenderness and local gas velocities. The simulation results well agree with experiments, thus validating the proposed model and computation.  相似文献   

14.
This paper analyzes the influence of different coal mass fraction in an air dense medium fluidized bed (ADMFB). The effect of the low density particles layer on heavy sedimentation increased with increasing material layer thickness. The thickness of the low density particles layer also affected the final settling time of the high density particles. Increasing the thickness of the low density particles layer by Δh provoked an increase in the settling of high density particles that was related to their diameter (Δh/D). The pressure gradient across the bed was lower than that observed for the control experiment, which had only the dense material, owing to a decrease in the pressure gradient in Zones 1 and 5 (at the top and bottom of the bed, respectively). Introducing different coal sizes resulted in different fluidization environments, particle accumulation layers, and changes to the surrounding zone. However, the influence of the coal particles on the local bed characteristics was related to its concentration. The feeding mass fraction of 6–13 mm size and 13–25 mm size coal should be limited to10% and 13%, respectively. The ranges of possible deviation were found to be 0.08–0.15 and 0.07–0.10 for the respective samples.  相似文献   

15.
In this work, a new drag model for TFM simulation in gas–solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with experimental data than those of the Gidaspow drag model did.  相似文献   

16.
Anti-wear beams installed on water walls of circulating fluidized bed (CFB) boilers are one of the most effective ways to protect against water-wall erosion. Beam effects from, for example, beam size and superficial gas velocity were investigated on gas–solid hydrodynamics in a CFB test rig using CFD simulations and experimental methods. The downward flow of the wall layer solids is observed to be disrupted by the beam but is then restored some distance further downstream. When falling solids from the wall layer hit the anti-wear beam, the velocity of the falling solids decreases rapidly. A fraction of the solids accumulates on the beam. Below the beams, the falling solids have reduced velocities but upward-moving solids were observed on the wall. The effect of the beam increases with width and superficial gas velocity. Wear occurs mainly above the beam and its variation with width is different above to below the beam. There is an optimum width that, when combined with beam height, results in less erosion.  相似文献   

17.
The fluidization behavior of Geldart A particles in a gas–solid micro-fluidized bed was investigated by Eulerian–Eulerian numerical simulation. The commonly used Gidaspow drag model was tested first. The simulation showed that the predicted minimum bubbling velocities were significantly lower than the experimental data even when an extremely fine grid size (of approximately one particle diameter) was used. The modified Gibilaro drag model was therefore tested next. The predicted minimum bubbling velocity and bed voidage were in reasonable agreement with the experimental data available in literature. The experimentally observed regime transition phenomena from bubbling to slugging were also reproduced successfully in the simulations. Parametric studies indicated that the solid-wall boundary conditions had a significant impact on the predicted gas and solid flow behavior.  相似文献   

18.
A numerical simulation was conducted to study the effect of pressure on bubble dynamics in a gas–solid fluidized bed. The gas flow was modeled using the continuum theory and the solid phase, by the discrete element method (DEM). To validate the simulation results, calculated local pressure fluctuations were compared with corresponding experimental data of 1-mm polyethylene particles. It was shown that the model successfully predicts the hydrodynamic features of the fluidized bed as observed in the experiments. Influence of pressure on bubble rise characteristics such as bubble rise path, bubble stability, average bubbles diameter and bubble velocity through the bed was investigated. The simulation results are in conformity with current hydrodynamic theories and concepts for fluidized beds at high pressures. The results show further that elevated pressure reduces bubble growth, velocity and stability and enhances bubble gyration through the bed, leading to change in bed flow structure.  相似文献   

19.
The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison of velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.  相似文献   

20.
The minimum fluidization velocity (Umf) is a key parameter for the scale-up of inverse liquid–solid fluidized beds. Theoretical predictions using common correlations were compared against experimental minimum fluidization velocity measurements of low density (28–638 kg/m3), 0.80–1.13 mm Styrofoam particles in a fluidized bed with a height of 4.5 m and 0.2 m diameter. The average absolute relative deviation for the predicted minimum fluidization velocity for particles below 300 kg/m3 was above 40% using the studied common correlations. A modified Wen and Yu correlation was thus proposed based on novel and past measurements with low-density and small-diameter particles, expanding the range for predicting Umf. The new correlation predicted Umf with deviations below 15% for ST028, ST122 and ST300. This modified correlation also improved Umf predictions for comparable particles from a previous study, demonstrating its validity for a larger range of low-density particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号