首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Similar to the Debye-Hu?ckel plasma, charged groups in solutions of rigid rod polyelectrolytes attract each other. We derive expression for the correlation free energy of electrostatic attraction of the rods within the random phase approximation. In this theory, we explicitly take into account positions of charged groups on the chains and examine both charge and polymer concentration fluctuations. The correlation free energies and the osmotic pressures are calculated for isotropic and completely ordered nematic phase. The results of the discrete model are compared with results of a continuous model. The discrete model gives rise to a stronger attraction between the charged groups both in the isotropic and nematic phases and to a stronger orienting action of the electrostatic forces.  相似文献   

2.
Electrostatic internal and free energies are calculated for the cell model of a polyelectrolyte solution having two kinds of counterions of the same charge but different size. The calculation is based on the solution of the Poisson–Boltzmann equation obtained previously. The electrostatic contributions to the internal and free energies are presented as functions of valences, radii, and mole fractions of counterions, and their application to interpretation of experimental results is discussed.  相似文献   

3.
The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio‐)chemical thermodynamics. Many important endogenous receptor‐binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice‐summation scheme or a cutoff‐truncation scheme with Barker–Watts reaction‐field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest‐host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free‐energy calculation studies if changes in the net charge are involved. © 2013 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

4.
The analysis of experimental data suggests that the energy levels of ions in a crystal shift rigidly by an amount equal to the Madelung energy (electrostatic bond energy) maintaining the same separation as in the free ion. This leads to the conclusion that the electrostatic bonding energies of ions in a crystal is taken up partly by the orbital electrons and partly by the nuclear charge.  相似文献   

5.
A procedure, based on the measurement of pyren-1-carboxyaldehyde fluorescence, has been used to obtain the free energy corresponding to the interaction of several surfactants of alkyltrimethylammonium-type RN(CH3)3+ and DNA. These free energies depend linearly on the number of carbon atoms in the tail of the surfactant. In this way, it was possible to determine the -CH2-/DNA interaction free energy as well as the free energy of interaction of DNA and the head group of the surfactants. According to the values of these free energies, the surfactant/DNA interaction is mainly electrostatic, for the surfactants used in this work. However, for long enough tails the free energy corresponding to the hydrophobic interaction can reach the same value as the electrostatic one. The procedure used in this work could be extended to the measurement of other group/DNA interactions.  相似文献   

6.
Common methods of determining atomic polarizabilities suffer from the inclusion of nonlocal effects such as charge polarization. A new method is described for determining fully ab initio atomic polarizabilities based on calculating the response of atomic multipoles to the local electrostatic potential. The localized atomic polarizabilities are then used to calculate induction energies that are compared to ab initio induction energies to test their usefulness in practical applications. These polarizabilities are shown to be an improvement over the corresponding molecular polarizabilities, in terms of both absolute accuracy and the convergence of the multipolar induction series. The transferability of localized polarizabilities for the alkane series is also discussed.  相似文献   

7.
A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)].  相似文献   

8.
Considering the influences of electrostatic potential Phi upon the change of solute charge distribution deltarho and rho upon the change deltaPhi at the same time, a more reasonable integral formula of dG = (1/2) integral (V) (rhodeltaPhi + Phideltarho)dV is used to calculate the change of the electrostatic free energy in charging the solute-solvent system to a nonequilibrium state, instead of the one of dG = integral (V) PhideltarhodV used before. This modification improves the expressions of electrostatic free energy and solvation free energy, in which no quantity of the intermediate equilibrium state is explicitly involved. Detailed investigation reveals that the solvation free energy of nonequilibrium only contains the interaction energy between the field due to the solute charge in vacuum, and the dielectric polarization at the nonequilibrium state. The solvent reorganization energies of forward and backward electron transfer reactions have been redefined because the derivations lead to a remarkable feature that these quantities are direction-dependent, unlike the theoretical models developed before. The deductions are given in the electric field-displacement form. Relevant discussions on the reliability of theoretical models suggested in this work have also been presented.  相似文献   

9.
An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous assessment of the solution accuracy; (ii) a pair of low dielectric charged spheres embedded in a ionic solvent to compute electrostatic interaction free energies as a function of the distance between sphere centers; (iii) surface potentials of proteins, nucleic acids and their larger-scale assemblies such as ribosomes; and (iv) electrostatic solvation free energies and their salt sensitivities - obtained with both linear and nonlinear Poisson-Boltzmann equation - for a large set of proteins. These latter results along with timings can serve as benchmarks for comparing the performance of different PBE solvers.  相似文献   

10.
Electrostatic and polarization energies for the three known polymorphic crystal structures of 1,4‐dichlorobenzene, as well as for one particularly stable virtual crystal structure generated by computer search, were calculated by a new accurate numerical integration method over static molecular charge densities obtained from high level ab initio molecular‐orbital calculations. Results are compared with those from standard empirical atom‐atom force fields. The new electrostatic energies, which include charge density overlap (penetration) effects, are seen to be much larger than and sometimes of opposite sign to those derived from point‐charge models. None of the four polymorphs is substantially more stable than the others on electrostatic‐energy grounds. Molecule‐molecule electrostatic energies have been calculated for the more important molecular pairs in each of the four structures; trends are found to be very different from those indicated by point‐charge energies or by total energies estimated with a parametric atom‐atom force field. Conclusions based exclusively on analysis of intermolecular atom contacts and point‐charge electrostatics may need to be modified in the light of the new kind of calculation.  相似文献   

11.
Free energies of hydration (FEH) have been computed for 13 neutral and nine ionic species as a difference of theoretically calculated Gibbs free energies in solution and in the gas phase. In‐solution calculations have been performed using both SCIPCM and PCM polarizable continuum models at the density functional theory (DFT)/B3LYP and ab initio Hartree–Fock levels with two basis sets (6‐31G* and 6‐311++G**). Good linear correlation has been obtained for calculated and experimental gas‐phase dipole moments, with an increase by ~30% upon solvation due to solute polarization. The geometry distortion in solution turns out to be small, whereas solute polarization energies are up to 3 kcal/mol for neutral molecules. Calculation of free energies of hydration with PCM provides a balanced set of values with 6‐31G* and 6‐311++G** basis sets for neutral molecules and ionic species, respectively. Explicit solvent calculations within Monte Carlo simulations applying free energy perturbation methods have been considered for 12 neutral molecules. Four different partial atomic charge sets have been studied, obtained by a fit to the gas‐phase and in‐solution molecular electrostatic potentials at in‐solution optimized geometries. Calculated FEH values depend on the charge set and the atom model used. Results indicate a preference for the all‐atom model and partial charges obtained by a fit to the molecular electrostatic potential of the solute computed at the SCIPCM/B3LYP/6‐31G* level. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

12.
A new generalized Born model for estimating the free energy of hydration is presented. The new generalized Born/volume integral (GB/VI) estimates the free energy of hydration as a classical electrostatic energy plus a cavitation energy that is not based upon atomic surface area (SA) used in GB/SA hydration models but on a VI London dispersion energy estimated from quantities already calculated in the classical electrostatic energy. The (relatively few) GB/VI model parameters are fitted to experimental data, and parameterizations for two different atomic partial charge models are presented. Comparison of the calculated and experimental free energies of hydration for 560 small molecules (both neutral and charged) shows good agreement (r(2) = 0.94).  相似文献   

13.
The interaction of the lipophilic cyclophane 1 with several acetylcholine (ACh) and tetramethylammonium (TMA) salts has been investigated in deuteriochloroform to ascertain the influence of the counterion on the cation-pi interaction. Reliable association constants have been measured for 17 salts of commonly used anions; corresponding binding free energies -DeltaG degrees ranged from over 8 kJ mol(-1) down to the limit of detection. The dramatic dependence of the binding energy on the anion showed that the latter takes part in the process with a passive and adverse contribution, which inhibits cation binding even to complete suppression in unfavorable cases. Thermodynamic parameters for the association of 1 with TMA picrate demonstrate that binding is enthalpic in origin, showing a substantial enthalpy gain (DeltaH degrees = -16.7 kJ mol(-1)) and an adverse entropic contribution (DeltaS degrees = -27.9 J mol(-1) K(-1)). A correlation has been found between the "goodness" of anions as binding partners and the solubility of their salts. Conversion of the anion into a more charge-dispersed species, for example, conversion of chloride into dialkyltrichlorostannate, improves cation binding substantially, indicating that charge dispersion is a main factor determining the influence of the anion on the cation-pi interaction. DFT computational studies show that the variation of the binding free energy of TMA with the counterion is closely accounted for by the electrostatic potential (EP) of the ion pair: guest binding appears to respond to the cation's charge density exposed to the receptor, which is determined by the anion's charge density through a polarization mechanism. A value of -DeltaG degrees = 38.6 kJ mol(-1) has been extrapolated for the free energy of binding of TMA to 1 in chloroform but in the absence of a counterion. The transmission of electrostatic effects from the ion pair to the cation-pi interaction demonstrates that host-guest association is governed by Coulombic attraction, as long as factors (steric, entropic, solvation, etc.) other than pure electrostatics are not prevalent.  相似文献   

14.
Electrostatic free energies of solvation for 15 neutral amino acid side chain analogs are computed. We compare three methods of varying computational complexity and accuracy for three force fields: free energy simulations, Poisson-Boltzmann (PB), and linear response approximation (LRA) using AMBER, CHARMM, and OPLS-AA force fields. We find that deviations from simulation start at low charges for solutes. The approximate PB and LRA produce an overestimation of electrostatic solvation free energies for most of molecules studied here. These deviations are remarkably systematic. The variations among force fields are almost as large as the variations found among methods. Our study confirms that success of the approximate methods for electrostatic solvation free energies comes from their ability to evaluate free energy differences accurately.  相似文献   

15.
The aqueous solvation free energies of ionized molecules were computed using a coupled quantum mechanical and molecular mechanical (QM/MM) model based on the AM1, MNDO, and PM3 semiempirical molecular orbital methods for the solute molecule and the TIP3P molecular mechanics model for liquid water. The present work is an extension of our model for neutral solutes where we assumed that the total free energy is the sum of components derived from the electrostatic/polarization terms in the Hamiltonian plus an empirical “nonpolar” term. The electrostatic/polarization contributions to the solvation free energies were computed using molecular dynamics (MD) simulation and thermodynamic integration techniques, while the nonpolar contributions were taken from the literature. The contribution to the electrostatic/polarization component of the free energy due to nonbonded interactions outside the cutoff radii used in the MD simulations was approximated by a Born solvation term. The experimental free energies were reproduced satisfactorily using variational parameters from the vdW terms as in the original model, in addition to a parameter from the one-electron integral terms. The new one-electron parameter was required to account for the short-range effects of overlapping atomic charge densities. The radial distribution functions obtained from the MD simulations showed the expected H-bonded structures between the ionized solute molecule and solvent molecules. We also obtained satisfactory results by neglecting both the empirical nonpolar term and the electronic polarization of the solute, i.e., by implementing a nonpolarization model. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1028–1038, 1999  相似文献   

16.
We present the first global parameterization and validation of a novel charge model, called AM1-BCC, which quickly and efficiently generates high-quality atomic charges for computer simulations of organic molecules in polar media. The goal of the charge model is to produce atomic charges that emulate the HF/6-31G* electrostatic potential (ESP) of a molecule. Underlying electronic structure features, including formal charge and electron delocalization, are first captured by AM1 population charges; simple additive bond charge corrections (BCCs) are then applied to these AM1 atomic charges to produce the AM1-BCC charges. The parameterization of BCCs was carried out by fitting to the HF/6-31G* ESP of a training set of >2700 molecules. Most organic functional groups and their combinations were sampled, as well as an extensive variety of cyclic and fused bicyclic heteroaryl systems. The resulting BCC parameters allow the AM1-BCC charging scheme to handle virtually all types of organic compounds listed in The Merck Index and the NCI Database. Validation of the model was done through comparisons of hydrogen-bonded dimer energies and relative free energies of solvation using AM1-BCC charges in conjunction with the 1994 Cornell et al. forcefield for AMBER.(13) Homo- and hetero-dimer hydrogen-bond energies of a diverse set of organic molecules were reproduced to within 0.95 kcal/mol RMS deviation from the ab initio values, and for DNA dimers the energies were within 0.9 kcal/mol RMS deviation from ab initio values. The calculated relative free energies of solvation for a diverse set of monofunctional isosteres were reproduced to within 0.69 kcal/mol of experiment. In all these validation tests, AMBER with the AM1-BCC charge model maintained a correlation coefficient above 0.96. Thus, the parameters presented here for use with the AM1-BCC method present a fast, accurate, and robust alternative to HF/6-31G* ESP-fit charges for general use with the AMBER force field in computer simulations involving organic small molecules.  相似文献   

17.
The linear finite difference Poisson-Boltzmann (FDPB) equation is applied to the calculation of the electrostatic binding free energies of a group of inhibitors to the Neuraminidase enzyme. An ensemble of enzyme-inhibitor complex conformations was generated using Monte Carlo simulations and the electrostatic binding free energies of subtly different configurations of the enzyme-inhibitor complexes were calculated. It was seen that the binding free energies calculated using FDPB depend strongly on the configuration of the complex taken from the ensemble. This configurational dependence was investigated in detail in the electrostatic hydration free energies of the inhibitors. Differences in hydration energies of up to 7 kcal mol–1 were obtained for root mean square (RMS) structural deviations of only 0.5 Å. To verify the result, the grid size and parameter dependence of the calculated hydration free energies were systematically investigated. This showed that the absolute hydration free energies calculated using the FDPB equation were very sensitive to the values of key parameters, but that the configurational dependence of the free energies was independent of the parameters chosen. Thus just as molecular mechanics energies are very sensitive to configuration, and single-structure values are not typically used to score binding free energies, single FDPB energies should be treated with the same caution.  相似文献   

18.
A weakly charged flexible polyelectrolyte chain in a neutral spherical cavity is analyzed by using self-consistent field theory within an explicit solvent model. Assuming the radial symmetry for the system, it is found that the confinement of the chain leads to creation of a charge density wave along with the development of a potential difference across the center of cavity and the surface. We show that the solvent entropy plays an important role in the free energy of the confined system. For a given radius of the spherical cavity and fixed charge density along the backbone of the chain, solvent and small ion entropies dominate over all other contributions when chain lengths are small. However, with the increase in chain length, chain conformational entropy and polymer-solvent interaction energy also become important. Our calculations reveal that energy due to electrostatic interactions plays a minor role in the free energy. Furthermore, we show that the total free energy under spherical confinement is not extensive in the number of monomers. Results for the osmotic pressure and mean activity coefficient for monovalent salt are presented. We demonstrate that fluctuations at one-loop level lower the free energy and corrections to the osmotic pressure and mean activity coefficient of the salt are discussed. Finite size corrections are shown to widen the range of validity of the fluctuation analysis.  相似文献   

19.
Alchemically derived free energies are artifacted when the perturbed moiety has a nonzero net charge. The source of the artifacts lies in the effective treatment of the electrostatic interactions within and between the perturbed atoms and remaining (partial) charges in the simulated system. To treat the electrostatic interactions effectively, lattice-summation (LS) methods or cutoff schemes in combination with a reaction-field contribution are usually employed. Both methods render the charging component of the calculated free energies sensitive to essential parameters of the system like the cutoff radius or the box side lengths. Here, we discuss the results of three previously published studies of ligand binding. These studies presented estimates of binding free energies that were artifacted due to the charged nature of the ligands. We show that the size of the artifacts can be efficiently calculated and raw simulation data can be corrected. We compare the corrected results with experimental estimates and nonartifacted estimates from path-sampling methods. Although the employed correction scheme involves computationally demanding continuum-electrostatics calculations, we show that the correction estimate can be deduced from a small sample of configurations rather than from the entire ensemble. This observation makes the calculations of correction terms feasible for complex biological systems. To show the general applicability of the proposed procedure, we also present results where the correction scheme was used to correct independent free energies obtained from simulations employing a cutoff scheme or LS electrostatics. In this work, we give practical guidelines on how to apply the appropriate corrections easily.  相似文献   

20.
The raw ionic solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions (finite or periodic system, system shape, and size) and treatment of electrostatic interactions (Coulombic, lattice sum, or cutoff based) used during these simulations. In the present article, it is shown that correction terms can be derived for the effect of (A) an incorrect solvent polarization around the ion due to the use of an approximate (not strictly Coulombic) electrostatic scheme; (B) the finite size or artificial periodicity of the simulated system; (C) an improper summation scheme to evaluate the potential at the ion site and the possible presence of a liquid-vacuum interface in the simulated system. Taking the hydration free energy of the sodium cation as a test case, it is shown that the raw solvation free energies obtained using seven different types of boundary conditions and electrostatic schemes commonly used in explicit-solvent simulations (for a total of 72 simulations differing in the corresponding simulation parameters) can be corrected so as to obtain a consistent value for this quantity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号