首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Metal-organic frameworks (MOFs), {[Cu(2)(bdcppi)(dmf)(2)]·10DMF·2H(2)O}(n) (SNU-50) and {[Zn(2)(bdcppi)(dmf)(3)]·6DMF·4H(2)O}(n) (SNU-51), have been prepared by the solvothermal reactions of N,N'-bis(3,5-dicarboxyphenyl)pyromellitic diimide (H(4)BDCPPI) with Cu(NO(3))(2) and Zn(NO(3))(2), respectively. Framework SNU-50 has an NbO-type net structure, whereas SNU-51 has a PtS-type net structure. Desolvated solid [Cu(2)(bdcppi)](n) (SNU-50'), which was prepared by guest exchange of SNU-50 with acetone followed by evacuation at 170 °C, adsorbs high amounts of N(2), H(2), O(2), CO(2), and CH(4) gases due to the presence of a vacant coordination site at every metal ion, and to the presence of imide groups in the ligand. The Langmuir surface area is 2450 m(2) g(-1). It adsorbs H(2) gas up to 2.10 wt% at 1 atm and 77 K, with zero coverage isosteric heat of 7.1 kJ mol(-1), up to a total of 7.85 wt% at 77 K and 60 bar. Its CO(2) and CH(4) adsorption capacities at 298 K are 77 wt% at 55 bar and 17 wt% at 60 bar, respectively. Of particular note is the O(2) adsorption capacity of SNU-50' (118 wt% at 77 K and 0.2 atm), which is the highest reported so far for any MOF. By metal-ion exchange of SNU-51 with Cu(II), {[Cu(2)(bdcppi)(dmf)(3)]·7DMF·5H(2)O}(n) (SNU-51-Cu(DMF)) with a PtS-type net was prepared, which could not be synthesized by a direct solvothermal reaction.  相似文献   

2.
A preliminary study of isopropanol (IPA) adsorption/desorption isotherms on a jungle-gym-type porous coordination polymer, [Zn(2)(bdc)(2)(dabco)](n) (1, H(2)bdc = 1,4-benzenedicarboxylic acid, dabco =1,4-diazabicyclo[2.2.2]octane), showed unambiguous two-step profiles via a highly shrunk intermediate framework. The results of adsorption measurements on 1, using probing gas molecules of alcohol (MeOH and EtOH) for the size effect and Me(2)CO for the influence of hydrogen bonding, show that alcohol adsorption isotherms are gradual two-step profiles, whereas the Me(2)CO isotherm is a typical type-I isotherm, indicating that a two-step adsorption/desorption is involved with hydrogen bonds. To further clarify these characteristic adsorption/desorption behaviors, selecting nitroterephthalate (bdc-NO(2)), bromoterephthalate (bdc-Br), and 2,5-dichloroterephthalate (bdc-Cl(2)) as substituted dicarboxylate ligands, isomorphous jungle-gym-type porous coordination polymers, {[Zn(2)(bdc-NO(2))(2)(dabco)]·solvents}(n) (2 ? solvents), {[Zn(2)(bdc-Br)(2)(dabco)]·solvents}(n) (3 ? solvents), and {[Zn(2)(bdc-Cl(2))(2)(dabco)]·solvents}(n) (4 ? solvents), were synthesized and characterized by single-crystal X-ray analyses. Thermal gravimetry, X-ray powder diffraction, and N(2) adsorption at 77 K measurements reveal that [Zn(2)(bdc-NO(2))(2)(dabco)](n) (2), [Zn(2)(bdc-Br)(2)(dabco)](n) (3), and [Zn(2)(bdc-Cl(2))(2)(dabco)](n) (4) maintain their frameworks without guest molecules with Brunauer-Emmett-Teller (BET) surface areas of 1568 (2), 1292 (3), and 1216 (4) m(2) g(-1). As found in results of MeOH, EtOH, IPA, and Me(2)CO adsorption/desorption on 2-4, only MeOH adsorption on 2 shows an obvious two-step profile. Considering the substituent effects and adsorbate sizes, the hydrogen bonds, which are triggers for two-step adsorption, are formed between adsorbates and carboxylate groups at the corners in the pores, inducing wide pores to become narrow pores. Interestingly, such a two-step MeOH adsorption on 2 depends on the temperature, attributed to the small free-energy difference (ΔF(host)) between the two guest-free forms, wide and narrow pores.  相似文献   

3.
Two novel Zn(II) metal-organic frameworks (MOFs) constructed by trinuclear-triangular and paddle-wheel units, namely {[Zn(5)(dmtrz)(3)(IPA)(3)(OH)]·DMF·H(2)O}(n) (MAC-4, Hdmtrz = 3,5-dimethyl-1H-1,2,4-triazole, H(2)IPA = isophthalic acid, DMF = dimethyl formamide) and {[Zn(5)(dmtrz)(3)(OH-IPA)(3)(OH)]·DMF·5H(2)O}(n) (MAC-4-OH, OH-H(2)IPA = 5-hydroxyisophthalic acid), were solvothermally synthesized. Single-crystal analyses reveal that MAC-4-OH is an iso-reticular framework of MAC-4 with channels functionalized by hydroxyl groups. Gas adsorption reveals that MAC-4-OH shows a significant enhancement for CO(2) uptake compared with that of MAC-4 due to the existence of electrostatic attractive interactions, though its surface area is lower than that of MAC-4.  相似文献   

4.
Starting with the same precursors, pyridine-2,3-dicarboxylate (pyrdc) and 4,4'-bipyridyl (bipy), two 3D porous coordination polymers, {[Cu(bipy)(0.5)(pyrdc)]·3H(2)O} (1) and {[Cu(bipy)(0.5)(pyrdc)]·0.5bipy·3H(2)O} (2), have been synthesized by changing the solvent system from MeOH/H(2)O to EtOH/H(2)O. Single-crystal structure analysis revealed that 1 and 2 are supramolecular isomers with 3D pillared-layer structures having 1D channel systems. Isomer 1 has a flexible structure and shows gated adsorption behavior, while framework 2 has a rigid backbone and exhibits the adsorption properties of typical microporous materials.  相似文献   

5.
Three new Mn(II) coordination compounds {[Mn(NCNCN)(2)(azpy)]·0.5azpy}(n) (1), {[Mn(NCS)(2)(azpy)(CH(3)OH)(2)]·azpy}(n) (2), and [Mn(azpy)(2)(H(2)O)(4)][Mn(azpy)(H(2)O)(5)]·4PF(6)·H(2)O·5.5azpy (3) (where azpy = 4,4'-azobis(pyridine)) have been synthesized by self-assembly of the primary ligands, dicyanamide, thiocyanate, and hexafluorophosphate, respectively, together with azpy as the secondary spacer. All three complexes were characterized by elemental analyses, IR spectroscopy, thermal analyses, and single crystal X-ray crystallography. The structural analyses reveal that complex 1 forms a two-dimensional (2D) grid sheet motif. These sheets assemble to form a microporous framework that incorporates coordination-free azpy by host-guest π···π and C-H···N hydrogen bonding interactions. Complex 2 features azpy bridged one-dimensional (1D) chains of centrosymmetric [Mn(NCS)(2)(CH (3)OH)(2)] units which form a 2D porous sheet via a CH(3)···π supramolecular interaction. A guest azpy molecule is incorporated within the pores by strong H-bonding interactions. Complex 3 affords a 0-D motif with two monomeric Mn(II) units in the asymmetric unit. There exist π···π, anion···π, and strong hydrogen bonding interactions between the azpy, water, and the anions. Density functional theory (DFT) calculations, at the M06/6-31+G* level of theory, are used to characterize a great variety of interactions that explicitly show the importance of host-guest supramolecular interactions for the stabilization of coordination compounds and creation of the fascinating three-dimensional (3D) architecture of the title compounds.  相似文献   

6.
Gas adsorption and storage in metal-organic framework MOF-177   总被引:3,自引:0,他引:3  
Gas adsorption experiments have been carried out on a zinc benzenetribenzoate metal-organic framework material, MOF-177. Hydrogen adsorption on MOF-177 at 298 K and 10 MPa gives an adsorption capacity of approximately 0.62 wt %, which is among the highest hydrogen storage capacities reported in porous materials at ambient temperatures. The heats of adsorption for H2 on MOF-177 were -11.3 to -5.8 kJ/mol. By adding a H2 dissociating catalyst and using our bridge building technique to build carbon bridges for hydrogen spillover, the hydrogen adsorption capacity in MOF-177 was enhanced by a factor of approximately 2.5, to 1.5 wt % at 298 K and 10 MPa, and the adsorption was reversible. N2 and O2 adsorption measurements showed that O2 was adsorbed more favorably than N2 on MOF-177 with a selectivity of approximately 1.8 at 1 atm and 298 K, which makes MOF-177 a promising candidate for air separation. The isotherm was linear for O2 while being concave for N2. Water vapor adsorption studies indicated that MOF-177 adsorbed up to approximately 10 wt % H2O at 298 K. The framework structure of MOF-177 was not stable upon H2O adsorption, which decomposed after exposure to ambient air in 3 days. All the results suggested that MOF-177 could be a potentially promising material for gas separation and storage applications at ambient temperature (under dry conditions or with predrying).  相似文献   

7.
Kim H  Das S  Kim MG  Dybtsev DN  Kim Y  Kim K 《Inorganic chemistry》2011,50(8):3691-3696
For the first time, phase-pure interpenetrated MOF-5 (1) has been synthesized and its gas sorption properties have been investigated. The phase purity of the material was confirmed by both single-crystal and powder X-ray diffraction studies and TGA analysis. A systematic study revealed that controlling the pH of the reaction medium is critical to the synthesis of phase-pure 1, and the optimum apparent pH (pH*) for the formation of 1 is 4.0-4.5. At higher or lower pH*, [Zn(2)(BDC)(2)(DMF)(2)] (2) or [Zn(5)(OH)(4)(BDC)(3)] (3), respectively, was predominantly formed. The pore size distribution obtained from Ar sorption experiments at 87 K showed only one peak, at ~6.7 ?, which is consistent with the average pore size of 1 revealed by single crystal X-ray crystallography. Compared to MOF-5, 1 exhibited higher stability toward heat and moisture. Although its surface area is much smaller than that of MOF-5 due to interpenetration, 1 showed a significantly higher hydrogen capacity (both gravimetric and volumetric) than MOF-5 at 77 K and 1 atm, presumably because of its higher enthalpy of adsorption, which may correlate with its higher volumetric hydrogen uptake compared to MOF-5 at room temperature, up to 100 bar. However, at high pressures and 77 K, where the saturated H(2) uptake mostly depends on the surface area of a porous material, the total hydrogen uptake of 1 is notably lower than that of MOF-5.  相似文献   

8.
The complexes [(H3N)5Ru(II)(mu-NC)Mn(I)Lx]2+, prepared from [Ru(OH2)(NH3)5]2+ and [Mn(CN)L(x)] {L(x) = trans-(CO)2{P(OPh)3}(dppm); cis-(CO)2(PR3)(dppm), R = OEt or OPh; (PR3)(NO)(eta-C5H4Me), R = Ph or OPh}, undergo two sequential one-electron oxidations, the first at the ruthenium centre to give [(H3N)5Ru(III)(mu-NC)Mn(I)Lx]3+; the osmium(III) analogues [(H3N)5Os(III)(mu-NC)Mn(I)Lx]3+ were prepared directly from [Os(NH3)5(O3SCF3)]2+ and [Mn(CN)Lx]. Cyclic voltammetry and electronic spectroscopy show that the strong solvatochromism of the trications depends on the hydrogen-bond accepting properties of the solvent. Extensive hydrogen bonding is also observed in the crystal structures of [(H3N)5Ru(III)(mu-NC)Mn(I)(PPh3)(NO)(eta-C5H4Me)][PF6]3.2Me2CO.1.5Et2O, [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)(dppm)2-trans][PF6]3.5Me2CO and [(H3N)5Ru(III)(mu-NC)Mn(I)(CO)2{P(OEt)3}(dppm)-trans][PF6]3.4Me2CO, between the amine groups (the H-bond donors) at the Ru(III) site and the oxygen atoms of solvent molecules or the fluorine atoms of the [PF6]- counterions (the H-bond acceptors).  相似文献   

9.
Xiang S  Huang J  Li L  Zhang J  Jiang L  Kuang X  Su CY 《Inorganic chemistry》2011,50(5):1743-1748
Two nanotubular metal-organic frameworks (MOFs), {Cu(L1)·2H(2)O·1.5DMF}(∞) (1) and {Cu(2)(L2)(2)(H(2)O)(2)·7H(2)O·3DMF}(∞) (2), with novel topologies have been constructed based on Cu(2+), 5-(pyridin-4-yl)isophthalic acid (L1) and 5-(pyridin-3-yl)isophthalic acid (L2), respectively. Two MOFs were characterized by IR spectroscopy, thermogravimetry, single-crystal, and powder X-ray diffraction methods. Network analysis reveals a two-nodal (3,6)-connected (4·6(2))(2)(4(2)·6(10)·8(3)) net and a three-nodal (3,4)-connected (4·8(2))(4)(4(2)·8(2)·10(2))(2)(8(4)·12(2)) net. Interpenetration is inherently prevented by both of the topologies of the frameworks. The porosity of MOF 1 was confirmed by N(2) and CO(2) gas adsorption investigations. MOF 1 exhibits remarkable hydrogen sorption hysteresis at low pressure and a H(2) uptake capacity of 1.05 wt% at 77 K and 1 atm.  相似文献   

10.
Six new coordination polymers, namely {[Zn(btec)(0.5)(btmb)]·2H(2)O}(n) (1), {[Co(btec)(0.5)(btmb)(H(2)O)]·3H(2)O}(n) (2), {[Cu(btec)(0.5)(btmb)]·H(2)O}(n) (3), {[Cu(4)(btc)(4)(btmb)(4)]·H(2)O}(n) (4), {[Co(3)(bta)(2)(btmb)(2)]·2H(2)O}(n) (5), [Co(Hbta)(btmb)](n) (6) (H(4)btec = 1,2,4,5-benzenetetracarboxylate, H(3)btc = 1,3,5-benzenetricarboxylate, H(3)bta = 1,2,4-benzenetricarboxylate and btmb = 4,4'-bis(1,2,4-triazol-1-ylmethyl)biphenyl), have been successfully synthesized under hydrothermal conditions. All these complexes were structurally determined by single-crystal X-ray diffraction, elemental analysis, IR, TGA and XRD. Crystal structural analysis reveals that 1 is the first example of an unusual 3D framework with (8(6)) topology containing a 2D molecular fabric structure. Complex 2 exhibits a 3D NbO network with (6(4)·8(2)) topology. In 3, Cu(II) ions are coordinated by anti-conformational btmb ligands to form left- and right-handed double helices, which are further bridged by the 4-connected btec(4-) anions to give a 3D porous network. Complex 4 presents a rare 3D gra network structure with (6(3))(6(9)·8) topology. 5 and 6 were obtained through controllable pH values of solution, 5 features a scarce binodal (3,8)-connected tfz-d framework with the trinuclear Co(II) clusters acting as nodes, whereas 6 has an extended 2D 4(4) grid-like layer and the adjacent 2D layers are interconnected by strong hydrogen bonding interactions into a 3D supramolecular framework. The structural diversities indicate that distinct organic acid ligands, the nature of metal ions and the pH value play crucial roles in modulating the formation of the resulting coordination complexes and the connectivity of the ultimate topological nets. Moreover, magnetic susceptibility measurement of 5 indicates the presence of weak ferromagnetic interactions between the Co(II) ions bridged by carboxylate groups.  相似文献   

11.
Two new 3D coordination polymers based on tetranuclear clusters, {[Co(4)(ina)(5)(μ(3)-OH)(2)(H(2)O)(EtOH)]-NO(3)·2EtOH·4H(2)O}(n) (1) (Hina = isonicotinic acid) and {[Ni(4)(ina)(5)(μ(3)-OH)(2)(EtCOO)]·6EtOH·2H(2)O}(n) (2), were obtained by the solvothermal reactions from Hina and different metal salts. The [M(4)(μ(3)-OH)(2)] cores act as 7- and 9-connected nodes and are extended through ina linkers to highly-connected frameworks with vmr net for 1 and bct-9-P2(1)/c net for 2. Both the desolvated frameworks display effective gas sorption capacities of N(2) and H(2) with Langmuir surface areas of 546 and 917 m(2) g(-1) for 1 and 2, respectively. Magnetic studies show spin canting and spin-glass behaviours with T(g) = 6.0 and 15.0 K for 1 and 2, respectively. The intra- and inter-tetramer coupling interactions and cooperative magnetic correlation greatly influence the bulk magnetic behaviours in this system.  相似文献   

12.
Crystalline metal-organic framework (MOF) nanosheets have been fabricated via top-down delamination from bulk crystals of a layered MOF, {Zn(TPA)(H(2)O)·DMF}(n) (MOF-2), and characterized by Tyndall scattering, scanning electron microscopy and atomic force microscopy measurements. The delaminated MOF-2 nanosheets exhibit remarkable amine intercalation property and reversible amine exchangeability.  相似文献   

13.
Two isomorphous 3D metal-organic frameworks, {[Cu2(BPnDC)2(bpy)].8 DMF.6 H2O}n (1) and {[Zn2(BPnDC)2(dabco)].13 DMF.3 H2O}n (2), have been prepared by the solvothermal reactions of benzophenone 4,4'-dicarboxylic acid (H2BPnDC) with Cu(NO3)(2).2.5 H2O and 4,4'-bipyridine (bpy), and with Zn(NO3)(2).6 H2O and 4-diazabicyclo[2.2.2]octane (dabco), respectively. Compounds 1 and 2 are composed of paddle-wheel {M2(O2CR)4} cluster units, and they generate 2D channels with two different large pores (effective size of larger pore: 18.2 A for 1, 11.4 A for 2). The framework structure of desolvated solid, [Cu2(BPnDC)2(bpy)]n (SNU-6; SNU=Seoul National University), is the same as that of 1, as evidenced by powder X-ray diffraction patterns. SNU-6 exhibits high permanent porosity (1.05 cm3 g(-1)) with high Langmuir surface area (2910 m2 g(-1)). It shows high H2 gas storage capacity (1.68 wt % at 77 K and 1 atm; 4.87 wt % (excess) and 10.0 wt % (total) at 77 K and 70 bar) with high isosteric heat (7.74 kJ mol(-1)) of H2 adsorption as well as high CO2 adsorption capability (113.8 wt % at 195 K and 1 atm). Compound 2 undergoes a single-crystal-to-single-crystal transformation on guest exchange with n-hexane to provide {[Zn2(BPnDC)2(dabco)].6 (n-hexane).3 H2O}n (2hexane). The transformation involves dynamic motion of the molecular components in the crystal, mainly a bending motion of the square planes of the paddle-wheel units resulting from rotational rearrangement of phenyl rings and carboxylate planes of BPnDC2-.  相似文献   

14.
Chen Q  Lin JB  Xue W  Zeng MH  Chen XM 《Inorganic chemistry》2011,50(6):2321-2328
A microporous coordination polymer, namely, [Co(3)(ina)(4)(OH)(C(2)H(5)OH)(3)](NO(3))·C(2)H(5)OH·(H(2)O)(3) (1, or MCF-38, ina = isonicotinate), with 8-connected {Co(3)(OH)} clusters as the structural secondary building units, has been solvothermally synthesized. The hydroxo-centered Co(II) cluster involves multiple active metal sites. The interesting apical ligand substitutions have been directly observed, and the corresponding products of [Co(3)(ina)(4)(OH)(G)(x)(H(2)O)(n)](NO(3))·G·(H(2)O)(m) (1 ? PrOH, G = PrOH, x = 2, n = 1, m = 3; 1 ? BuOH, G = BuOH, x = 2, n = 1, m = 1, and 1 ? MeOH, G = MeOH, x = 3, n = 0, m = 7) have also been obtained by solvothermal syntheses or crystal-to-crystal transformations. High-pressure H(2) adsorption measurement at 77 K reveals that activated 1 can absorb 2.2 wt % H(2) at 5 bar. The relative H(2) absorption at low pressure (86% of the storage capacity at 1 bar) is higher than the corresponding values reported for some typical porous coordination polymers. The magnetic studies of 1 show a dominant antiferromagnetic coupling between Co(II) ions of intra- and inter-cluster.  相似文献   

15.
Reaction of mono- and dilithiated thiophene (a), bithiophene (b) and 2,5-dibromothiophene (c) with [Re(2)(CO)(10)] afforded, after subsequent alkylation with triethyloxonium tetrafluoroborate, tetra- and binuclear Fischer carbene complexes, [Re(2)(CO)(9){C(OEt){C(4)H(2)S}(n)X}], n = 1, X = H (1a); n = 2, X = H (1b); n = 1, X = Br (1c); n = 1, X = C(OEt)Re(2)(CO)(9), (2a); n = 2, X = C(OEt)Re(2)(CO)(9) (2b), as major products. The dirhenium acylate intermediates from this reaction not only gave the expected novel ethoxycarbene complexes with alkylation but after rhenium-rhenium bond breaking afforded a number of minor products. The (1)H NMR spectrum of the crude reaction mixture revealed the formation of four metal hydride complexes and aldehydes. Protonation with HBF(4) instead of alkylation with Et(3)OBF(4) significantly increased the yields of the hydride complexes, which enabled the positive identification of three of these complexes. In addition to the known compounds [Re(CO)(5)H] and [Re(3)(CO)(14)H] (3), a unique complex displaying a hydroxycarbene fragment connected to an acyl fragment via an O-H···O hydrogen bond and a Re···H···Re bond linking the two Re centers, [(μ-H){Re(CO)(4)C(OH){C(4)H(2)S}(n)H}{Re(CO)(4)C(O){C(4)H(2)S}(n)H}], n = 1 (4a) or n = 2 (4b), were isolated. The formation of thiophene aldehydes, H{C(O)}(m){C(4)H(2)S}(n)C(O)H (m = 0 or 1 and n = 1 or 2), were observed and the novel monocarbene complexes with terminal aldehyde groups, [Re(2)(CO)(9){C(OEt){C(4)H(2)S}(n)C(O)H}], n = 1 (5a) and n = 2 (5b) could be isolated. A higher yield of 5b was obtained after stirring crystals of 2b in wet THF. The crystal structures of 1a, 2a, 4a and 5b are reported.  相似文献   

16.
Three new paramagnetic ion-directed coordination frameworks, {[Co(4)(H(2)O)(2)(μ(3)-OH)(2)(atz)(2)(nip)(2)]·3H(2)O}(n) (1), {[Mn(4)(H(2)O)(2)(μ(3)-OH)(2)(atz)(2)(nip)(2)]·H(2)O·MeOH}(n) (2) and {[Cu(2)(H(2)O)(μ(3)-OH)(atz)(nip)]·2H(2)O}(n) (3), were, respectively, obtained by solvo-/hydrothermal reactions of 5-amino-1H-tetrazole (Hatz), 5-nitroisophathalic acid (H(2)nip) with an inorganic Co(II), Mn(II) or Cu(II) salt. The former two complexes are two-dimensional (2D) covalent layers built from butterfly-shaped tetranuclear M(4)(μ(3)-OH)(2) clusters and double atz(-) and nip(2-) linkers. Whereas complex 3 is a 3D framework with scarcely observed corner-sharing Cu(3)(μ(3)-OH) Δ-chains extended by nip(2-) linkages, in which the anionic atz(-) ligand acts as a reinforcement to consolidate the Δ-chain. Magnetically, due to the interplay of the anisotropy of spin carrier and magnetic exchange interactions from the adjacent spin carriers, the complexes exhibit spin-canted antiferromagnetism with a Néel temperature lower than 2.0 K for 1 and an antiferromagnetic ordering with a slight field-induced spin-flop transition for 2. In contrast, complex 3 with a local Kagomé sublattice displays spin-frustrated antiferromagnetic behavior with magnetic ordering at 16.0 K.  相似文献   

17.
A novel mixed-ligand 3D metal-organic framework (MOF), {Zn(2)(TMTA)(bipy)(0.5)(H(2)O)(2)·NO(3)·2DMF·H(2)O}(n) (1) (H(3)TMTA = 4,4',4'-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoic acid, bipy = 4,4'-bipyridine, DMF = dimethylformamide), was constructed based on bipy-pillared honeycomb bilayers and showed the unusual 2D→3D polycatenation of bilayers.  相似文献   

18.
We report herein the synthesis and physicochemical characterization of eight new manganese-oxalato compounds with 1,2-bis(4-pyridyl)ethylene (bpe): {(Hbpe)(2)[Mn(2)(μ-ox)(3)]·~0.8(C(2)H(5)OH)·~0.4(H(2)O)}(n) (1), {[Mn(μ-ox)(μ-bpe)]·xH(2)O}(n) (2), [Mn(2)(μ-ox)(2)(μ-bpe)(bpe)(2)](n) (3), [Mn(μ-ox)(μ-bpe)](n) (4a and 4b), and {[Mn(4)(μ-ox)(3)(μ-bpe)(4)(H(2)O)(4)]·(X)(2)·mY}(n) with X = NO(3)(-) (5a), Br(-) (5b), and ClO(4)(-) (5c) and Y = solvation molecules. The appropriate selection of the synthetic conditions allowed us to control the crystal structure and to design extended 2D and 3D frameworks. Compound 1 is obtained at acid pH values and its crystal structure consists of stacked [Mn(2)(μ-ox)(3)](2-) layers with cationic Hbpe(+) molecules intercalated among them. Compound 2 was obtained at basic pH values with a manganese/bpe ratio of 1:1, and the resulting 3D structure consists of an interpenetrating framework in which metal-oxalato chains are bridged by bpe ligands, leading to a microporous network that hosts a variable number of water molecules (between 0 and 1) depending on the synthetic conditions. Compound 3, synthesized with a manganese/bpe ratio of 1:3, shows a 2D framework in which linear metal-oxalato chains are joined by bis-monodentate 1,2-bis(4-pyridyl)ethylene ligands. The thermal treatment of compound 3 permits the release of one of the bpe molecules, giving rise to two new 2D crystalline phases of formula [Mn(μ-ox)(μ-bpe)](n) (4a and 4b) depending on the heating rate. The open structures of 5a-5c were synthesized in a medium with a high concentration of nitrate, perchlorate, or bromide salts (potassium or sodium as cations). These anions behave as templating agents directing the crystal growing toward a cationic porous network, in which the anions placed in the voids and channels of the structure present high mobility, as inferred from the ionic exchange experiments. Variable-temperature magnetic susceptibility measurements show an overall antiferromagnetic behavior for all compounds, which are discussed in detail.  相似文献   

19.
Two 3D porous terbium(III) mucicate frameworks, {[Tb(2)(Mu(2-))(3)(H(2)O)(2)]·4H(2)O}(n) (1) and {[Tb(Mu(2-))(Ox(2-))(0.5)(H(2)O)]·H(2)O}(n) (2), have been synthesized under hydrothermal conditions by changing the pH of the reaction medium. Isostructural europium(III) and seven mixed terbium(III)-europium(III) mucicates were synthesized by doping different percentages of Eu(III) under similar reaction conditions and unveiling different emission colors ranging from green to red under the same wavelength. Both dehydrated Tb(III) metal-organic frameworks exhibit selective H(2)O vapor sorption over other solvent molecules (MeOH, MeCN, and EtOH) of less polarity and bigger size and have been correlated to the highly hydrophilic pore surfaces decorated with -OH groups and O atoms from the carboxyl groups of mucicate.  相似文献   

20.
A series of functionalized adamantanes: 1,3-bis(1,2,4-triazol-4-yl)(tr(2)ad); 1,3,5-tris(1,2,4-triazol-4-yl)-(tr(3)ad); 1,3,5,7-tetrakis(1,2,4-triazol-4-yl)adamantanes (tr(4)ad) and 3,5,7-tris(1,2,4-triazol-4-yl)-1-azaadamantane (tr(3)ada) were developed as a new family of geometrically rigid polydentate tectons for supramolecular synthesis of framework solids. The coordination compounds were prepared under hydrothermal conditions; their structures reveal a special potential of the triazolyl adamantanes for the generation of highly-connected and open frameworks as well as structures based upon polynuclear metal clusters assembled with short-distance N(1),N(2)-triazole bridges. Complexes [Cd{L}(2)]A·nH(2)O [L = tr(3)ad, A = 2NO(3)(-) (4), CdCl(4)(2-) (5); L = tr(3)ada, A = CdI(4)(2-) (7)] are isomorphous and adopt a layered 3,6-connected structure of CdI(2) type. [{Cu(3)(OH)}(2)(SO(4))(5)(H(2)O)(2){tr(3)ad}(3)]·26H(2)O (6) is a layered polymer based upon Cu(3)(μ(3)-OH) nodes and trigonal tr(3)ad links. In [Cu(3)(OH)(2){tr(3)ada}(2)(H(2)O)(4)](ClO(4))(4) (8), [Cu(2){tr(3)ada}(2)(H(2)O)(3)](SO(4))(2)·7H(2)O (9) and [Cd(2){tr(3)ada}(3)]Cl(4)·28H(2)O (10) (UCl(3)-type net) the organic tripodal ligands bridge polynuclear metal clusters. Complexes [Ag{tr(4)ad}]NO(3)·3.5H(2)O (11) and [Cu{tr(4)ad}(H(2)O)](ClO(4))(2)·3H(2)O (12) have 3D SrAl(2)-type frameworks with the metal ions and adamantane tectons as topologically equivalent tetrahedral nodes, while in [Cd(3)Cl(6){tr(4)ad}(2)]·9H(2)O (13) the ligands bridge trinuclear six-connected Cd(3)Cl(6)(μ-tr)(4)(tr)(2) clusters. In the compounds [Cd(2){tr(2)ad}(4)(H(2)O)(4)](CdBr(4))(2)·2H(2)O (2) and [Cd{tr(2)ad}(4){CdI(3)}(2)]·4H(2)O (3) the bitopic ligands provide simple links between the metal ions, while in [Ag(2){tr(2)ad}(2)](NO(3))(2)·2H(2)O (1) the ligand is tetradentate and generates a 3D framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号