首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The performance characteristics of potassium-selective electrodes made with valinomycin membranes plasticized with dioctyl adipate or sebacate, and with a solid silver contact or an internal solution, have been critically examined. The choice of electrode depends on a number of factors, including the interfering ion(s) present. The electrodes can be used for determination of potassium in natural waters.  相似文献   

2.
Song F  Ha J  Park B  Kwak TH  Kim IT  Nam H  Cha GS 《Talanta》2002,57(2):263-270
Carbonate-selective membranes were prepared by incorporating a molecular tweezer-type carbonate-selective neutral carrier [N,N-dioctyl-3alpha,12alpha-bis(4-trifluoroacetylbenzyloxy)-5beta-cholan-24-amide] into a room temperature vulcanizing-type silicone rubber (3140 RTV-SR) matrix, and deposited on the planar-type electrodes (Pt containing Ag/AgCl electrodes formed on a ceramic plate) with and without an intermediary conducting polymer layer. Two types of solvent-soluble conducting polymers [poly(1-hexyl-3,4-dimethyl-2,5-pyrrolylene) or poly(3-octylthiophene-2,5-diyl)] have been examined as the solid contact material. Potentiometric properties of the resultant all-solid-state electrodes were evaluated in terms of their carbonate selectivity, response slope, potential stability and reproducibility. The sensitivity and carbonate selectivity of the SR membrane-based all-solid-state electrodes with conducting polymer solid contact were comparable to those of conventional electrodes. Experimental results also showed that the intermediary conducting polymer layer used in the all-solid-state electrodes greatly reduces the interference from dissolved oxygen.  相似文献   

3.
Komaba S  Arakawa J  Seyama M  Osaka T  Satoh I  Nakamura S 《Talanta》1998,46(6):1293-1297
The concentration of potassium was determined by a combination of flow injection analysis (FIA) with an all-solid-state potassium sensor detection. The all-solid-state potassium-selective electrode possessing long-term potential stability was fabricated by coating an electroactive polypyrrole/poly(4-styrenesulfonate) film electrode with a plasticized poly(vinyl chloride) membrane containing valinomycin. The simple FIA system developed in this laboratory demonstrated sensitivity identical to that in the batch system and achieved considerably rapid assay (150 samples h−1). Analyses of soy sauce and control serum samples by this FIA system yielded results in good agreement with those obtained by conventional measurements.  相似文献   

4.
The development of all-solid-state potentiometric ion selective electrodes for monitoring of ascorbic acid, by using a screen-printed compatible solid contact is described. The applied methodology is based on the use of PVC membrane modified with some firstly-tested ionophores (triphenyltin(IV)chloride, triphenyltin(IV)hydroxide and palmitoyl-l-ascorbic acid) and a novel one synthesized in our laboratory (dibutyltin(IV) diascorbate). Synthesis protocol and some preliminary identification studies are given. A conductive graphite-based polymer thick film ink was used as an internal solid contact between the graphite electrode and the PVC membrane. The presence and the nature of the solid contact (plain or doped with lanthanum 2,6-dichlorophenolindophenol (DCPI)) seem to enhance the analytical performance of the electrodes in terms of sensitivity, dynamic range, and response time. The analytical performance of the constructed electrodes was evaluated with potentiometry, constant-current chronopotentiometry and electrochemical impedance spectroscopy (EIS). The interference effect of various compounds was also tested. The potential response of the optimized Ph3SnCl-based electrode was linear against ascorbic acid concentration range 0.005-5.0 mM. The applicability of the proposed sensors in real samples was also tested. The detection limit was 0.002 mM ascorbic acid (50 mM phosphate, pH 5 in 50 mM KCl). The slope of the electrodes was super-Nernstian and pH dependent, indicating a mechanism involving a combination of charge transfer and ion exchange processes. Fabrication of screen-printed ascorbate ISEs has also been demonstrated.  相似文献   

5.
本文采用KTiOPO4单晶薄片作为离子活性传感膜, 制备了钾离子选择性电极。20℃时, 其线性响应范围为1.2×10^-^5~1.0mol.dm^-^3氯化钾溶液, 平均响应斜率为58mV/-lgak, 对钠离子的电位选择性系数为4.0×10^-^4。该电极的优点是电极斜率受酸度变化影响小, 稳定性和重现性好, 寿命长。  相似文献   

6.
All-solid-state ion-selective electrodes with plastic membrane (poly(vinyl chloride) (PVC), bis(2-ethylhexyl) sebacate (DOS), methyltri-n-tetradecylammonium chloride (MTTACl)), a conducting poly(pyrrole) (PPy) film doped either with chloride ions (PPyCl) or hexacyanoferrate(II) ions (PPyFeCN), and glassy carbon (GC) or screen-printed graphite layer (S-PG) as an inner electric contact were investigated. All the electrodes show close to Nernstian response, but their lifetimes vary. The at least 2-months lifetime of screen-printed electrodes is only achieved for the electrodes containing PPyFeCN (cation-exchanging film). Shorter lifetime of other screen-printed electrodes, i.e. without PPy, or with PPyCl (anion-exchanging film), was attributed to the diffusion of anionic products of the hydrolysis of organic components of the graphite paste used to prepare the electric contact. The properties of miniature, screen-printed electrodes comprising PPyFeCN solid contact, were comparable to those ion-selective electrodes with PPy solid contact (regardless the ion-exchanging characteristic of the polymer) deposited on GC electric contact.  相似文献   

7.
Farrell RE  Scott AD 《Talanta》1984,31(11):1005-1007
A simple procedure for the rapid construction of inexpensive potassium-selective electrodes with valinomycin-based PVC membranes is described. Potassium-selective membranes were formed on the end of Parafilm- or Tygon-covered glass tubes by dipping the tubes into a mixture of PVC, valinomycin, and dioctyl sebacate dissolved in tetrahydrofuran. Small internal Ag/AgCl reference electrodes were made with silver wire and placed inside the tubes with AgCl-saturated potassium chloride solution. This procedure yields tube-mounted membrane electrodes that perform as well as commercially available potassium-selective electrodes in terms of their response characteristics and practical applications with soil extracts. Moreover, it facilitates the evaluation of membranes with different compositions, for making ion-selective electrodes.  相似文献   

8.
A new all plastic sensor for Co2+ ions based on 2-amino-5 (hydroxynaphtyloazo-1′)-1,3,4 thiadiazole (ATIDAN) as ionophore was prepared. The electrode exhibits a low detection limit of 1.5 × 10−6 mol L−1 and almost theoretical Nernstian slope in the activity range 4.0 × 10−6–1 × 10−1 mol L−1 of cobalt ions. The response time of the sensor is less than 10 s and it can be used over a period of 6 months without any measurable divergence in potential. The proposed sensor shows a fairly good selectivity for Co(II) over other metal ions. The electrode was successfully applied for determination of Co2+ in real samples and as an indicator electrode in potentiometric titration of Co2+ ions with EDTA.   相似文献   

9.
Graphene modified electrodes have been fabricated by electrodeposition from an aqueous graphene oxide solution onto conducting Pt, Au, glassy carbon, and indium tin dioxide substrates. Detailed investigations of the electrochemistry of the [Ru(NH(3))(6)](3+/2+) and [Fe(CN)(6)](3-/4-) and hydroquinone and uric acid oxidation processes have been undertaken at glassy carbon and graphene modified glassy carbon electrodes using transient cyclic voltammetry at a stationary electrode and near steady-state voltammetry at a rotating disk electrode. Comparisons of the data with simulation suggest that the transient voltammetric characteristics at graphene modified electrodes contain a significant contribution from thin layer and surface confined processes. Consequently, interpretations based solely on mass transport by semi-infinite linear diffusion may result in incorrect conclusions on the activity of the graphene modified electrode. In contrast, steady-state voltammetry at a rotating disk electrode affords a much simpler method for the evaluation of the performance of graphene modified electrode since the relative importance of the thin layer and surface confined processes are substantially diminished and mass transport is dominated by convection. Application of the rotated electrode approach with carbon nanotube modified electrodes also should lead to simplification of data analysis in this environment.  相似文献   

10.
11.
Chen  Ningning  Cheng  Yuxiao  Li  Chen  Zhang  Cuiling  Zhao  Kai  Xian  Yuezhong 《Mikrochimica acta》2015,182(11):1967-1975

We describe an electrochemical sensor for melamine based on a glassy carbon electrode (GCE) modified with reduced graphene oxide that was decorated with gold nanoparticles (AuNP/rGO). The AuNPs/rGO nanocomposite was synthesized by co-reduction of Au(III) and graphene oxide and characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The response of the modified GCE to melamine was investigated by using hexacyanoferrate as an electrochemical reporter. It is found that the electrochemical response to hexacyanoferrate is increasingly suppressed by increasing concentration of melamine. This is attributed to competitive adsorption of melamine at the AuNP/rGO composite through the interaction between the amino groups of melamine and the AuNPs. The presence of rGO, in turn, provides a platform for a more uniform distribution of the AuNPs and enhances the electron transfer rate of the redox reaction. The findings were used to develop a sensitive method for the determination of melamine. Under optimized conditions, the redox peak current of hexacyanoferrate at a working voltage of 171 mV (vs. SCE) is linearly related to the concentration of melamine in 5.0 to 50 nM range. The method was successfully applied to the determination of melamine in food contact materials.

A simple electrochemical sensor based on gold nanoparticles decorated reduced graphene oxide was developed for highly sensitive measurement of melamine in food contact materials.

  相似文献   

12.
13.
Udenafil is an oral agent for treating male erectile dysfunction. The poly(aniline) solid contact selective electrodes for udenafil have been fabricated from PVC cocktail solutions with three ion selective ion pairs. This solid contact electrode contains three layers of Pt/electro-conductive poly(aniline) polymer/PVC film with an ionophore with a thickness of 2.5 ± 0.1 mm. We compared the slopes of EMF responses and the response range of a solid contact electrode based on Udenafil-TmCIPB ion pair with those based on Udenafil-PMA and Udenafil-TPB ion pairs and showed that the response slopes were influenced by plasticizers. The EMF response slopes of Udenafil-TmCIPB-based solid contact electrodes equalled 58.0 mV/decade (at 20 ± 0.2°C) and their linear response dynamic ranges were 1.0 × 10−2∼1.0 × 10−5.85 M (r 2 = 0.9984). When electrodes with 6 different plasticizers based on Udenafil-TmCIPB were compared, as the dielectric constant of PVC plasticizer increased, so was the response slope at the same time. Having applied the electrodes to artificial serum directly, we could get same satisfactory results [Nernstian slope: 60.3 mV/decade, dynamic range: 1.0 × 10−2∼1.0 × 10−5.78 M (r 2 = 0.9978) in artificial serum]. Solid contact electrodes with Udenafil-TmCIPB have shown the best selectivity, reproducibility of EMF, long-term stability, and short response time (< 20 s).  相似文献   

14.
An all-solid-state polymeric membrane Pb2+ ion-selective electrode (Pb2+-ISE) based on bimodal pore C60 (BP-C60) as solid contact has been developed. A BP-C60 film can be readily formed on the surface of a glassy carbon electrode by electrochemical deposition. Cyclic voltammetry and electrochemical impedance spectroscopy have been employed to characterize the BP-C60 film. The large double layer capacitance and fast charge-transfer capability make BP-C60 favorable to be used as solid contact for developing all-solid-state ISEs. The all-solid-state BP-C60-based Pb2+-ISE shows a Nernstian response in the range from 1.0 × 10−9 to 1.0 × 10−3 M with a detection limit of 5.0 × 10−10 M. The membrane electrode not only displays an excellent potential stability with the absence of a water layer between the ion-selective membrane and the underlying BP-C60 solid contact, but also is insensitive to interferences from O2, CO2 and light. The proposed solid-contact Pb2+-ISE has been applied to determine Pb2+ in real water samples and the results agree well with those obtained by anodic stripping voltammetry.  相似文献   

15.
We report on a non-covalent functionalization of graphene foam (GF) synthesized via chemical vapour deposition (CVD). The GF was treated with pyrene carboxylic acid (PCA) which acted as a source of oxygen and/or hydroxyl groups attached to the surface of the graphene foam for its electrochemical performance improvement. The modified graphene surface enabled a high pseudocapacitive effect on the GF. A specific capacitance of 133.3 F g?1, power density ~ 145.3 kW kg?1 and energy density ~ 4.7 W h kg?1 were achieved based on the functionalized foam in 6 M KOH aqueous electrolyte. The results suggest that non-covalent functionalization might be an effective approach to overcome the restacking problem associated with graphene electrodes and also signify the importance of surface functionalities in graphene-based electrode materials.  相似文献   

16.
Supercapacitors(SCs) have attracted much attention as one of the alternative energy devices due to their high power performance,long cycle life,and low maintenance cost.Graphene is considered as an innovative and promising material due to its large theoretical specific surface area,high electrical conductivity,good mechanical properties and chemical stability.Herein,we report an effective strategy for elaborately constructing rationally functionalized self-standing graphene(SG) obtained from giant graphene oxide(GGO) paper followed by an ultrarapid thermal-processing.This treatment results in both the exfoliation of graphene sheets and the reduction of GGO by elimination of oxygencontaining groups.The as-prepared SG electrode materials without additive and conducting agent provide an excellent combination of the electrical double layer capacitor(EDLC) and pseudocapacitor(PC) functions and exhibit superior electrochemical performance,including high specific capacitance,good rate capability and excellent cycling stability when investigated in three-electrode electrochemical cells.  相似文献   

17.
Graphene oxide has been used widely as a starting precursor for applications that cater to the needs of tunable graphene. However, the hydrophilic characteristic limits their application, especially in a hydrophobic condition. Herein, a novel non-covalent surface modification approach towards graphene oxide was conducted via a UV-induced photo-polymerization technique that involves two major routes; a UV-sensitive initiator embedded via pi-pi interactions on the graphene planar rings, and the polymerization of hydrophobic polymeric chains along the surface. The functionalized graphene oxide successfully achieved the desired hydrophobicity as it displayed the characteristic of being readily dissolved in organic solvent. Upon its addition into a polymeric solution and subjected to an electrospinning process,non-woven random nanofibers embedded with graphene oxide sheets were obtained. The prepared polymeric nanofibers were subjected to two-step thermal treatments that eventually converted the polymeric chains into a carbon-rich conductive structure. A unique morphology was observed upon the addition of the functionalized graphene oxide, whereby the sheets were embedded and intercalated within the carbon nanofibers and formed a continuous structure. This reinforcement effectively enhanced the electrochemical performance of the carbon nanofibers by recording a specific capacitance of up to 140.10 F/g at the current density of 1 A/g, which was approximately three folds more than that of pristine nanofibers.It also retained the capacitance up to 96.2% after 1000 vigorous charge/discharge cycles. This functionalization technique opens up a new pathway in tuning the solubility nature of graphene oxide towards the synthesis of a graphene oxide-reinforced polymeric structure.  相似文献   

18.
Nickel phosphide-embedded graphene, prepared by the hydrothermal reaction of red phosphorus, nickel chloride, and graphene oxide in a mixture of ethylene glycol-water, is investigated as the counter electrode of DSSCs. It is demonstrated that the DSSC with the nickel phosphide-embedded graphene as the new counter electrode presents an excellent performance competing with that of the Pt electrode.  相似文献   

19.
Journal of Solid State Electrochemistry - In the present study, an all-solid-state half-cell Li/ amorphous Si (a-Si) was fabricated using the guest Li+ ion conductor (15NaI∙LiBH4) as a solid...  相似文献   

20.
Voltammetric determination of synthetically prepared phytochelatins (γ-Glu-Cys)2Gly (PC2) and (γ-Glu-Cys)3Gly (PC3) has been studied using new type of copper solid amalgam electrode. The determination, based on the formation of cuprous complexes in buffer pH 8.1, is suitable for concentrations of PC in the range 10–100 nmol l−1. Reproducibility, employing electrochemical cleaning of the electrode surface, was statistically evaluated. The achieved limit of detection (2.1–2.6×10−9 mol l−1 for DCV measurement) together with the robust character of the electrode offer its use for detection of PCs in separated extracts of real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号