首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.  相似文献   

2.
The effects implied for the structure of compact objects by the modification of General Relativity (GR) produced by the generalization of the Lagrangian density to the form $f(R)=R+\alpha R^2$ , where $R$ is the Ricci curvature scalar, have been recently explored. It seems likely that this squared-gravity may allow heavier Neutron Stars (NSs) than GR. In addition, these objects can be useful to constrain free parameters of modified-gravity theories. The differences between alternative gravity theories are enhanced in the strong gravitational regime. In this regime, because of the complexity of the field equations, perturbative methods become a good choice to treat the problem. Following previous works in the field, we performed a numerical integration of the structure equations that describe NSs in $f(R)$ -gravity, recovering their mass-radius relations, but focusing on particular features that arise from this approach in the profiles of the NS interior. We show that these profiles run in correlation with the second-order derivative of the analytic approximation to the Equation of State (EoS), which leads to regions where the enclosed mass decreases with the radius in a counter-intuitive way. We reproduce all computations with a simple polytropic EoS to separate zeroth-order modified gravity effects.  相似文献   

3.
The gravity-mode (g-mode) eigenfrequencies of newly born strange quark stars (SQSs) and neutron stars (NSs) are studied. It is found that the eigenfrequencies in SQSs are much lower than those in NSs by almost 1 order of magnitude, since the components of a SQS are all extremely relativistic particles while nucleons in a NS are nonrelativistic. We therefore propose that newly born SQSs can be distinguished from the NSs by detecting the eigenfrequencies of the g-mode pulsations of supernovae cores through gravitational radiation by LIGO-class detectors.  相似文献   

4.
5.
C.S. Chen  Y.Q. Zhang  J. Guo 《Optik》2009,120(10):473-478
In low-temperature plasmas, the specific emission mechanism and the evolvement of the continuum and isolated lines are quite complex, which are described in detail. The calculations from the Stark-broadening measurement of individual lines show the density to be of the order of magnitude of 1018 cm−3. It is seen that the redshifts of spectral lines detected in this experiment are influenced by the electron density. A possible reason for this is given.  相似文献   

6.
7.
8.
付宏洋  文德华  燕晶 《物理学报》2012,61(20):577-582
计算和讨论了考虑非牛顿引力下的快速转动混合星结构与性质,包括质量-半径关系、Kepler转速、转动惯量、引力红移以及转动动能和引力结合能之比等.结果表明,转动将有效地增大混合星能支持的最大质量,Kepler转速下能支持的最大质量比静态时增加20%左右;转动对于考虑非牛顿引力的混合星整体结构性质(包括质量-半径关系、转动惯量、转动动能和引力结合能之比等)具有明显的影响,但对极向引力红移影响相对较小.  相似文献   

9.
With relativistic mean field theory we examine effect of hyperon coupling constants of hyperon Ξ on the surface gravitational redshift of the massive neutron star (NS) PSR J1614-2230 and NS PSR J0348+0432 as the potential well depth of hyperon Ξ is fixed. We find that the mass and radius of a NS increase with the increase of the coupling constant of hyperon Ξ. With the increase of the coupling constant of the hyperon Ξ, the surface gravitational redshift will decrease for a same NS mass but will increase for a same NS radius. The surface gravitational redshift of the more massive NS PSR J0348+0432 decreases by more than that of the less massive NS PSR J1614-2230. We also find that the value range of the surface gravitational redshift of NS will become narrower with the increase of the coupling constant of hyperon Ξ. The greater the NS mass, the greater the influence of the coupling constant of hyperon Ξ on the value range of the surface gravitational redshift of the NS.  相似文献   

10.
Precision measurements of particle electric dipole moments (EDMs) provide extremely sensitive means to search for non-standard mechanisms of T (or CP) violation. For the neutron EDM, the upper limit has been reduced by eight orders of magnitude in 50 years thereby excluding several CP violation scenarios. We report here on a new effort aiming at improving the neutron EDM limit by two orders of magnitude, down to a level of 3 × 10−28 e·cm. The two central elements of the approach are the use of the higher densities which will be available at the new dedicated spallation UCN source at the Paul Scherrer Institute, and the optimization of the in-vacuum Ramsey resonance technique, with storage chambers at room temperature, to reach new limits of sensitivity.  相似文献   

11.
We show here how the internal structure of a neutron star can be inferred from its gravitational wave spectrum. Under the premise that the frequencies and damping rates of a few w-mode oscillations are found, we apply an inversion scheme to determine its mass, radius, and density distribution. In addition, an accurate equation of state of nuclear matter can also be determined.  相似文献   

12.
On the basis of the general theory of relativity, and within the framework of the model in which the neutron star has a constant density, we investigate the influence of a solid layer of superdense material inside a neutron star on its limiting mass. We show that the existence of such an internal solid shell leads to an increase of the limiting mass of a neutron star in comparison with the case of purely liquid neutron-star matter. This increase of mass can reach 30%.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 46–49, February, 1986.  相似文献   

13.
皮春梅  杨书华  周霞  周爱芝 《中国物理 C》2010,34(12):1818-1822
Employing phenomenological density-dependent critical temperatures of strong singlet-state proton pairing and of moderate triplet-state neutron pairing, we investigate the effects of rotochemical heating on the thermal evolution of superfluid neutron stars whose cores consist of npe matter with the Akmal-Pandharipande-Ravenhall equation of state. Since the star is not quite in the weak interaction equilibrium state during spin-down, the departure from the chemical equilibrium leads to the rotochemical heating in a rotating NS which will increase the stellar's temperature. Our calculations show that the rotochemical heating delays the cooling of superfluid neutron stars considerably and makes the previous classification of NS cooling ambiguous. What's more, our model is currently consistent with all the observational data, and in particular some middle-aged and cold NSs (PRS J0205+6449 in 3C 58, PRS J1357-6429, RX J007.0+7303 in CTA 1, Vela) can be better explained when taking into account rotochemical heating.  相似文献   

14.
Employing phenomenological density-dependent critical temperatures of strong singlet-state proton pairing and of moderate triplet-state neutron pairing, we investigate the effects of rotochemical heating on the thermal evolution of superfluid neutron stars whose cores consist of npe matter with the Akmal-Pandharipande-Ravenhall equation of state. Since the star is not quite in the weak interaction equilibrium state during spin-down, the departure from the chemical equilibrium leads to the rotochemical heating in a rotating NS which will increase the stellar's temperature. Our calculations show that the rotochemical heating delays the cooling of superfluid neutron stars considerably and makes the previous classification of NS cooling ambiguous. What's more, our model is currently consistent with all the observational data, and in particular some middle-aged and cold NSs (PRS J0205+6449 in 3C 58, PRS J1357-6429, RX J007.0+7303 in CTA 1, Vela) can be better explained when taking into account rotochemical heating.  相似文献   

15.
Baryon and quark superfluidity in the cooling of neutron stars are investigated. Future observations will allow us to constrain combinations of the neutron or Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an MeV render quark matter virtually invisible for cooling. If the quark gap is smaller, quark superfluidity could be important, but its effects will be nearly impossible to distinguish from those of other baryonic constituents.  相似文献   

16.
Atomic Force Microscope (AFM) has been applied to evaluate the surface roughness and the track sensitivity of CR-39 track detector. We experimentally confirmed the inverse correlation between the track sensitivity and the roughness of the detector surface after etching. The surface of CR-39 (CR-39 doped with antioxidant (HARZLAS (TD-1)) and copolymer of CR-39/NIPAAm (TNF-1)) with high sensitivity becomes rough by the etching, while the pure CR-39 (BARYOTRAK) with low sensitivity keeps its original surface clarity even for the long etching.  相似文献   

17.
18.
Neutron star models with hyperon-mixed core are studied by a realistic approach to use the YN and the YY interactions consistent with hypernuclear data. From the compatibility of the theoretical maximum mass with the observed neutron star mass 1.44 M of PSR1913+16, the necessity of some extra repulsion in hypernuclear systems, e.g., a repulsion from three-body force, is stressed. It is noted that the increase of baryon degrees of freedom to avoid the short-range repulsion effectively is an essential mechanism causing the Y-mixed phase. Received: 1 May 2001 / Accepted: 4 December 2001  相似文献   

19.
Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating a finite-temperature (Shen's) equation of state (EOS) and neutrino cooling for the first time. It is found that for this stiff EOS, a hypermassive neutron star (HMNS) with a long lifetime (?10 ms) is the outcome for the total mass ?3.0M(⊙). It is shown that the typical total neutrino luminosity of the HMNS is ~3-8×10(53) erg/s and the effective amplitude of gravitational waves from the HMNS is 4-6×10(-22) at f=2.1-2.5 kHz for a source distance of 100 Mpc. We also present the neutrino luminosity curve when a black hole is formed for the first time.  相似文献   

20.
Latest general relativistic simulations for the merger of binary neutron stars with realistic equations of states (EOSs) show that a hypermassive neutron star of an ellipsoidal figure is formed after the merger if the total mass is smaller than a threshold value which depends on the EOSs. The effective amplitude of quasiperiodic gravitational waves from such hypermassive neutron stars is approximately 6-7 x 10(-21) at a distance of 50 Mpc, which may be large enough for detection by advanced laser interferometric gravitational wave detectors although the frequency is high, approximately 3 kHz. We point out that the detection of such signals may lead to constraining the EOSs for neutron stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号