首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutron scattering has been used to measure the charge and spin structure in the highly underdoped superconductor YBa(2)Cu(3)O(6.35). Incommensurate static charge ordering is found that remains at high temperatures. The magnetic pattern is complex with a resonance and incommensurate structure observed at low temperatures. The results clarify the role of striped phases in YBa(2)Cu(3)O(6+x) superconductors.  相似文献   

2.
The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough.  相似文献   

3.
Detailed neutron scattering measurements of YBa2Cu3O6.95 found that the resonance peak and incommensurate magnetic scattering induced by superconductivity represent the same physical phenomenon: two dispersive branches that converge near 41 meV and the in-plane wave vector q(AF)=(pi/a,pi/a) to form the resonance peak. One branch has a circular symmetry around q(AF) and quadratic downward dispersion from approximately 41 meV to the spin gap of 33+/-1 meV. The other, of lower intensity, disperses from approximately 41 meV to at least 55 meV. Our results exclude a quartet of vertical incommensurate rods in q-omega space expected from spin waves produced by dynamical charge stripes as an origin of the observed incommensurate scattering in optimally doped YBCO.  相似文献   

4.
The doping dependence of magnetic fluctuations in the underdoped copper oxide materials are studied within the t-J model. It is shown that away from the half-filling, the magnetic Bragg peaks from the dynamical spin structure factor spectrum S(k,ω) are incommensurate with the lattice. Although the incommensurability δ(x) is almost energy-independent, the dynamical spin susceptibility χ'(k,ω) at the incommensurate wave vectors is changed dramatically with energies, which is consistent with the experiments.  相似文献   

5.
We propose that the superconducting pairing symmetry of organic superconductors kappa-(BEDT-TTF)2X can be determined by measuring the position in momentum space of the incommensurate peaks of the spin susceptibility. Using the weak coupling BCS theory and including the many-body effects via the random-phase approximation for the Hubbard model on an anisotropic triangular lattice, we show that the position of these peaks is uniquely determined by the pairing symmetry of the superconducting state and the geometry of the Fermi surface. We demonstrate the different incommensurate patterns of spin responses for d(x(2)-y(2-)) and d(xy)-like pairing states. In addition, we find that there is no spin resonance mode in the reasonable range of parameters discussed.  相似文献   

6.
A detailed inelastic neutron scattering study of the high temperature superconductor YBa2Cu3O6.85 provides evidence of new resonant magnetic features, in addition to the well-known resonant mode at 41 meV: (i) a commensurate magnetic resonance peak at 53 meV with an even symmetry under exchange of two adjacent CuO2 layers, and (ii) high-energy incommensurate resonant spin excitations whose spectral weight is around 54 meV. The locus and the spectral weight of these modes provides unrevealed insight about the momentum shape of the electron-hole spin-flip continuum of d-wave superconductors.  相似文献   

7.
We report inelastic neutron scattering measurements of the resonant spin excitations in Ba(1-x)K(x)Fe(2)As(2) over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s(±)-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.  相似文献   

8.
We have studied the magnetic excitations in Ca2-xSrxRuO4, x=0.52 and 0.62, which exhibit an anomalously high susceptibility and heavy mass Fermi liquid behavior. Our inelastic neutron scattering experiments reveal strongly enhanced magnetic fluctuations around an incommensurate wave-vector (0.22,0,0) pointing to a magnetic instability. The magnetic fluctuations show no correlation in the c direction and also along the RuO2 planes the signal is extremely broad, Deltaq=0.45 A(-1). These fluctuations can quantitatively account for the high specific heat coefficient and relate to the high macroscopic susceptibility. The magnetic scattering is attributed to the d(xy) band, the active band for spin triplet superconductivity in Sr2RuO4.  相似文献   

9.
Using muon spin spectroscopy we have found that, for both NaxCoO(2) (0.6相似文献   

10.
The electron spin resonance is studied for noncollinear low-dimensional antiferromagnets RbMnBr3 and RbFe(MoO4)2 in a wide range of frequencies and fields. Both compounds have incommensurate spin structures appearing due to a low-symmetry distortion of an ideal hexagonal crystal lattice. Magnetic field applied in the spin plane induces a first-order transition into the commensurate phase. The low-energy resonance branch corresponding to a uniform oscillation of the spin system in the easy plane is observed in the two compounds in both incommensurate and commensurate phases, with a dramatic change of the spectra taking place near the transition field. The resonance spectrum of a nearly commensurate spin structure with long-wave modulations is analyzed in clean and dirty limits in the framework of a hydrodynamic approach. The resonance branch with steep field dependence in the incommensurate state is attributed to the acoustic mode with the gap resulted from pinning of local domain walls (discommensurations) on defects of the crystal structure.  相似文献   

11.
A stepwise transition from one incommensurate state of the spin system of a copper metaborate crystal to another incommensurate state was previously revealed using neutron scattering in an applied magnetic field. In this paper, the new state is interpreted as a combination of a commensurate state of one spin subsystem and an incommensurate state of another spin subsystem of the crystal.  相似文献   

12.
The perovskite LaCoO3 evolves from a nonmagnetic Mott insulator to a spin cluster ferromagnet (FM) with the substitution of Sr2+ for La3+ in La1-xSrxCoO3. The clusters increase in size and number with x and the charge percolation through the clusters leads to a metallic state. Using elastic neutron scattering on La1-xSrxCoO3 single crystals, we show that an incommensurate spin superstructure coexists with the FM spin clusters. The incommensurability increases continuously with x, with the intensity rising in the insulating phase and dropping in the metallic phase as it directly competes with the commensurate FM, itinerant clusters. The spin incommensurability arises from local order of Co3+-Co4+ clusters but no long-range static or dynamic spin stripes develop. The coexistence and competition of the two magnetic phases explain the residual resistivity at low temperatures in samples with metalliclike transport.  相似文献   

13.
We report neutron scattering studies on two single crystal samples of the electron-doped (n-type) superconducting (SC) cuprate Nd2-xCexCuO4 (x=0.15) with T(c)=18 and 25 K. Unlike the hole-doped (p-type) SC cuprates, where incommensurate magnetic fluctuations commonly exist, the n-type cuprate shows commensurate magnetic fluctuations at the tetragonal (1/2 1/2 0) reciprocal points both in the SC and in the normal state. A spin gap opens up when the n-type cuprate becomes SC, as in the optimally doped p-type La2-xSrxCuO4. The gap energy, however, increases gradually up to about 4 meV as T decreases from T(c) to 2 K, which contrasts with the spin pseudogap behavior with a T-independent gap energy in the SC state of p-type cuprates.  相似文献   

14.
We demonstrated experimentally a direct way to probe a hidden propensity to the formation of a spin-density wave in a nonmagnetic metal with strong Fermi surface nesting. Substituting Fe for a tiny amount of Cu (1%) induced an incommensurate magnetic order below 20 K in heavily overdoped La(2-x)Sr(x)CuO(4). Elastic neutron scattering suggested that this order cannot be ascribed to the localized spins on Cu or doped Fe. Angle-resolved photoemission revealed a strong Fermi surface nesting inherent in the pristine La(2-x)Sr(x)CuO(4) that likely drives this order. Our finding presents the first example of the long-sought "itinerant-spin extreme" of cuprates, where the spins of itinerant doped holes define the magnetic ordering ground state; it complements the current picture of cuprate spin physics that highlights the predominant role of localized spins at lower dopings.  相似文献   

15.
Monte Carlo simulations applied to a model of interacting fermions and classical spins show the existence of antiferromagnetic spin domains and charge stripes upon hole doping. The stripes have a filling of approximately 1/2 hole per site, and they separate spin domains with a pi phase shift among them. The observed stripes run either along the x or y axes. No particular boundary conditions or external fields are needed to stabilize these structures. When magnetic incommensurate peaks are observed at momentum pi(1,1-delta), charge incommensurate peaks appear at (0,2delta). The charge fluctuations responsible for the stripe formation also induce a pseudogap in the density of states.  相似文献   

16.
In Sr2RuO4 the spin excitation spectrum is dominated by incommensurate fluctuations at q = (0.3 0.3q(z)), which arise from Fermi-surface nesting. We show that upon Ti substitution, known to suppress superconductivity, a short range magnetic order develops with a propagation vector (0.307 0.307 1). In Sr2Ru0.91Ti0.09O4, the ordered moment points along the c direction. This finding shows that superconducting Sr2RuO4 is extremely close to an incommensurate spin density wave instability.  相似文献   

17.
We use cold neutron spectroscopy to study the low-energy spin excitations of superconducting (SC) FeSe0.4Te0.6 and essentially nonsuperconducting (NSC) FeSe0.45Te0.55. In contrast with BaFe2-x(Co,Ni)xAs2, where the low-energy spin excitations are commensurate both in the SC and normal state, the normal-state spin excitations in SC FeSe0.4Te0.6 are incommensurate and show an hourglass dispersion near the resonance energy. Since similar hourglass dispersion is also found in the NSC FeSe0.45Te0.55, we argue that the observed incommensurate spin excitations in FeSe(1-x)Tex are not directly associated with superconductivity. Instead, the results can be understood within a picture of Fermi surface nesting assuming extremely low Fermi velocities and spin-orbital coupling.  相似文献   

18.
Krishnamurthy  V.V.  Watanabe  I.  Nagamine  K.  Geibel  C.  Sparn  G.  Steglich  F. 《Hyperfine Interactions》1999,120(1-8):607-610
We report muon spin relaxation (μ+SR) studies on the magnetic phase diagram of Ce(Cu1-xNix)2Ge2 polycrystals for 0.5≤ x ≤ 0.8. A sharp magnetic transition, evidenced by the appearance of a fast Gaussian relaxation component σ, has been observed in the x = 0.5 alloy at 4.0 K in zero applied field. The average local field < Bμ> at the stopping sites of the muons, extracted from σ, exhibits a linear temperature dependence. We associate these features with an incommensurate spin density wave (SDW) ordering. Magnetic ordering, either long range or short range, and signatures of non-Fermi liquid behaviour have not been observed down to 2.0 K at x = 0.8. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
TbMnO3 is an orthorhombic insulator where incommensurate spin order for temperature T(N)<41 K is accompanied by ferroelectric order for T<28 K. To understand this, we establish the magnetic structure above and below the ferroelectric transition using neutron diffraction. In the paraelectric phase, the spin structure is incommensurate and longitudinally modulated. In the ferroelectric phase, however, there is a transverse incommensurate spiral. We show that the spiral breaks spatial inversion symmetry and can account for magnetoelectricity in TbMnO3.  相似文献   

20.
Using elastic and inelastic neutron scattering we show that a cubic spinel, CdCr2O4, undergoes an elongation along the c axis (c > a = b) at its spin-Peierls-like phase transition at T(N) = 7.8 K. The Néel phase (T < T(N)) has an incommensurate spin structure with a characteristic wave vector Q(M) = (0, delta,1) with delta approximately 0.09 and with spins lying on the ac plane. This is in stark contrast to another well-known Cr-based spinel, ZnCr2O4, that undergoes a c-axis contraction and a commensurate spin order. The magnetic excitation of the incommensurate Néel state has a weak anisotropy gap of 0.6 meV and it consists of at least three bands extending up to 5 meV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号