首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Variations in tryptophan fluorescence intensities confirm that copper(II) interacts with alpha-synuclein, a protein implicated in Parkinson's disease. Trp4 fluorescence decay kinetics measured for the F4W protein show that Cu(II) binds tightly (Kd 100 nM) near the N-terminus at pH 7. Work on a F4W/H50S mutant indicates that a histidine imidazole is not a ligand in this high-affinity site.  相似文献   

2.
3.
4.
Molecular dynamics (MD) simulations were carried out to study cocaine binding with wild-type human butyrylcholinesterase (BChE) and its mutants based on a recently reported X-ray crystal structure of human BChE. For each BChE-cocaine system, we simulated both the nonprereactive and prereactive complexes in water. Despite the significant difference found at the acyl binding pocket, the simulated structures confirm the fundamental structural and mechanistic insights obtained from earlier computational studies of wild-type BChE with cocaine based on a homology model, e.g. the rate-determining step for BChE-catalyzed hydrolysis of biologically active (-)-cocaine is the (-)-cocaine rotation in the active site from the nonprereactive BChE-(-)-cocaine complex to the prereactive complex. It has been demonstrated that the MD simulations on both the nonprereactive and prereactive BChE-cocaine complexes can clearly reveal whether specific mutations produce the desired BChE-(-)-cocaine binding structures in which the (-)-cocaine rotation is less hindered while the required prereactive BChE-(-)-cocaine binding is maintained. Based on the MD simulations, both A328W/Y332A and A328W/Y332G BChE's are expected to have catalytic activity for (-)-cocaine hydrolysis higher than that of wild-type BChE and the activity of A328W/Y332G BChE should be slightly higher than that of A328W/Y332A BChE due to the less-hindered (-)-cocaine rotation in the mutant BChE's. However, the less-hindered (-)-cocaine rotation is only a necessary condition for a higher activity mutant BChE. The (-)-cocaine rotation is also less hindered in A328W/Y332A/Y419S BChE, but (-)-cocaine binds with A328W/Y332A/Y419S BChE in a way that is not suitable for the catalysis. Thus, A328W/Y332A/Y419S BChE is expected to lose the catalytic activity. The computational predictions were confirmed by our experimental kinetic data, demonstrating that the MD simulation-based computational protocol used in this study is reliable in prediction of the catalytic activity of BChE mutants for (-)-cocaine hydrolysis.  相似文献   

5.
In the present study, we investigated a new approach for studying the interaction between p53 and MDM2/X (where MDM is murine double minute protein). The method is based on the different mobility between the interacting domains of the oncosuppressor p53 and its protein ligands MDM2/X on polyacrylamide gels under native conditions. While the two proteins MDM2/X alone were able to enter the gel, the formation of a binary complex between p53 and MDM2/X prevented the gel entry. The novel technique is reliable for determining the different affinity elicited by MDM2 or MDMX toward p53, and can be useful for analyzing the dissociation power exerted by other molecules on the p53–MDM2/X complex.  相似文献   

6.
Tumor suppressor protein p53 becomes inactive due to mutation on its DNA binding core domain leading to misbehavior of this protein and preventing its interaction with DNA. In the present study, changes of the protein conformation by five hot spot mutations of T-p53C were assessed preventing the mutants wild-type (WT) behavior. While studies of this nature were undertaken both experimentally and theoretically, the focus is fundamentally on the effects of the mutation on the dynamics of the protein. Hence, the basic concept underlying this study is the change in flexibility or rigidity of the protein. It was found that stable variant T-p53C (PDB-ID: 1uol) that is structurally and functionally very close to wild-type p53 is the most rigid structure and each single carcinogenic mutation on it makes the structure more flexible. We hypothesize that these changes of the molecule’s flexibility disrupt the network of hydrogen bonds associated with the interaction of WT not only at interaction but in the internal structures of the mutants as well, which prevents them from interacting in the WT fashion loosing the anti-cancer properties of WT.  相似文献   

7.
Bacillus subtilis ribonuclease P protein (P protein) is predominantly unfolded (D) at physiological pH and low ionic strength; however, small molecule anionic ligands (e.g., sulfate) directly bind to and stabilize the folded state (NL2). Because the D + 2L <--> NL2 transition is experimentally two-state, high-energy states such as the singly bound, folded species (NL) and the unliganded folded species (N) are generally difficult to detect at equilibrium. To study the conformational properties of these ensembles, NMR-detected amide hydrogen exchange (HX) rates of P protein were measured at four sulfate (i.e., ligand) concentrations, a method we denote "ligation-state hydrogen exchange". The ligand concentration dependence of the HX rate of 47 residues was fit to a model with four possible HX pathways, corresponding to the local and/or global opening reactions from NL2 and NL, the local opening of N, and the global opening of N to D. Data analysis permits the calculation of the residue-specific free energy of opening from each ensemble as well as the fractional amide HX flux through each pathway. Results indicate that the predominant route of HX is through the NL and N states, which represent only 0.45% and 0.0005% of the total protein population in 20 mM sodium sulfate, respectively. Despite the low population of N, a region of protected amides was identified. Therefore, exchange through unliganded forms must be accounted for prior to the interpretation of HX-based protein-interaction studies. We offer a simple test to determine if HX occurs through the liganded or unliganded form.  相似文献   

8.
The binding of a lophine-based fluorescence probe, 4-[4-(4-dimethylaminophenyl)-5-phenyl-1H-imidazol-2-yl]benzoic acid methyl ester (DAPIM) with human serum albumin (HSA) was investigated by fluorescence spectroscopy under physiological conditions. While DAPIM shows extreme low fluorescence in aqueous solution, DAPIM binding with HSA emits strong fluorescence at 510 nm. The binding constant and binding number determined by Scatchard plot was 3.65 × 106 M−1 and 1.07, respectively. Competitive binding between DAPIM and other ligands such as warfarin, valproic acid, diazepam and oleic acid, were also studied fluorometrically. The results indicated that the primary binding site of DAPIM to HSA is site II at subdomain IIIA. DAPIM can be a useful fluorescence probe for the characterization of drug-binding sites. In addition to the interaction study, because the fluorescence intensity of DAPIM increased in proportion to HSA concentration, its potential in HSA assay for serum sample was also evaluated.  相似文献   

9.
Resonance Raman spectroscopy is applied to the cyanide adducts of cytochrome P450cam and its T252A and D251N site-directed mutants, both in their substrate-free and camphor-bound forms, to probe active-site heme structure and, in particular, interactions of the FeCN fragment with potential active-site H-bond donors. In contrast to the ferrous CO and ferric NO adducts, which form only essentially linear (slightly distorted) FeXY fragments, the spectra of the ferric CN(-) adducts provide clear evidence the for the existence of an additional, rather highly bent, conformer; that is, the cyanide complexes form both linear and bent conformers in both the substrate-free and substrate-bound forms. Formation of this bent conformer is most reasonably attributed to the presence of off-axis H-bond donors, which induce distortion on the FeCN fragment but not the FeCO and FeNO fragments, which are poorer H-bond acceptors. For all three proteins, the substrate-free form exhibits a complex spectral pattern which arises because one of the modes associated with the FeCN fragment is coupled with two heme macrocycle deformation modes. Significantly, no evidence for such coupling is observed in the spectra of the camphor-bound forms. While various unknown factors may possibly give rise to selective activation of such coupling in the substrate-free derivative, given the known facts about the active-site architecture of this enzyme, a plausible explanation is that the bent conformer is oriented toward the water-filled substrate-binding site in the substrate-free form, but oppositely, toward the proposed proton delivery shuttle, in the substrate-bound form. Sensitivity of the FeCN modes to H(2)O/D(2)O exchange in the two camphor-bound mutants, which is apparently absent for the camphor-bound native protein, is most reasonably attributed to the known presence of extra water in the active sites of these mutants.  相似文献   

10.
11.
12.
Intrinsically disordered proteins or intrinsically disordered regions (IDPs) have gained much attention in recent years due to their vital roles in biology and prevalence in various human diseases. Although IDPs are perceived as attractive therapeutic targets, rational drug design targeting IDPs remains challenging because of their conformational heterogeneity. Here, we propose a hierarchical computational strategy for IDP drug virtual screening (IDPDVS) and applied it in the discovery of p53 transactivation domain I (TAD1) binding compounds. IDPDVS starts from conformation sampling of the IDP target, then it combines stepwise conformational clustering with druggability evaluation to identify potential ligand binding pockets, followed by multiple docking screening runs and selection of compounds that can bind multi-conformations. p53 is an important tumor suppressor and restoration of its function provides an opportunity to inhibit cancer cell growth. TAD1 locates at the N-terminus of p53 and plays key roles in regulating p53 function. No compounds that directly bind to TAD1 have been reported due to its highly disordered structure. We successfully used IDPDVS to identify two compounds that bind p53 TAD1 and restore wild-type p53 function in cancer cells. Our study demonstrates that IDPDVS is an efficient strategy for IDP drug discovery and p53 TAD1 can be directly targeted by small molecules.

A hierarchical computational strategy for IDP drug virtual screening (IDPDVS) was proposed and successfully applied to identify compounds that bind p53 TAD1 and restore wild-type p53 function in cancer cells.  相似文献   

13.
Gram-negative bacterium Neisseria meningitidis, responsible for human infectious disease meningitis, acquires the iron (Fe3+) ion needed for its survival from human transferrin protein (hTf). For this transport, transferrin binding proteins TbpA and TbpB are facilitated by the bacterium. The transfer cannot occur without TbpA, while the absence of TbpB only slows down the transfer. Thus, understanding the TbpA-hTf binding at the atomic level is crucial for the fight against bacterial meningitis infections. In this study, atomistic level of mechanism for TbpA-hTf binding is elucidated through 100 ns long all-atom classical MD simulations on free (uncomplexed) TbpA. TbpA protein underwent conformational change from ‘open’ state to ‘closed’ state, where two loop domains, loops 5 and 8, were very close to each other. This state clearly cannot accommodate hTf in the cleft between these two loops. Moreover, the helix finger domain, which might play a critical role in Fe3+ ion uptake, also shifted downwards leading to unfavorable Tbp-hTf binding. Results of this study indicated that TbpA must switch between ‘closed’ state to ‘open’ state, where loops 5 and 8 are far from each other creating a cleft for hTf binding. The atomistic level of understanding to conformational switch is crucial for TbpA-hTf complex inhibition strategies. Drug candidates can be designed to prevent this conformational switch, keeping TbpA locked in ‘closed’ state.  相似文献   

14.
Understanding the factors influencing the stability of protein mutants is an important task in molecular and computational biology. In this work, we have approached this problem by examining the relative importance of secondary structure and solvent accessibility of the mutant residue for understanding/predicting the stability of protein mutants. We have used hydrophobic, electrostatic and hydrogen bond free energy terms and nine unique physicochemical, energetic and conformational properties of amino acids in the present study and these parameters have been related with changes in thermal stability (DeltaTm) of all the single mutants of lysozymes based on single and multiple correlation coefficients. As expected the properties reflecting hydrophobicity and hydrophobic free energy play a major role to distinguish stabilizing and destabilizing mutants. The hydrophobic free energy due to carbon and nitrogen atoms distinguish the stability of coil and strand mutations to the accuracy of 100 and 90%, respectively. In agreement with previous results, the subgroup classification based on secondary structure and the information about its location in the structure yielded good relationship with the experimental DeltaTm. We revealed that the secondary structure information is equally or more important than solvent accessibility for understanding the stability of protein mutants. The comparison of amino acid properties with free-energy terms indicate that the energetic contribution explains the mutant stability better in coil region whereas the amino acid properties do better in strand region. Further, the combination of free energies with amino acid properties increased the correlation significantly. The present study demonstrates the importance of classifying the mutants based on secondary structure to the stability of proteins upon mutations.  相似文献   

15.
The retention behavior of 39 structurally diverse neutral, basic and acidic drugs was investigated on an HSA stationary phase using PBS buffer (pH 7.0) and acetonitrile or 2-propanol as organic modifiers. Extrapolated or directly measured log kw values as well as isocratic retention factors were correlated with plasma protein binding data taken from the literature. Retention factors determined in the presence of 10% acetonitrile led to high quality 1:1 correlation with apparent log KHSA values. The derived reference equation was successfully validated using a secondary set of 24 drugs. Further analysis of HSA retention into more fundamental properties revealed the involvement of anionic species in solute-stationary phase interactions, expressed by the negatively charged fraction, besides the partitioning mechanism which was reflected by lipophilicity. Protonation of basic drugs, although less important, may also influence retention, leading to reduced partitioning into the HSA surface as a net effect, while it seems to have no effect on HSA binding. The above results were further confirmed by linear solvation energy relationships (LSER).  相似文献   

16.
A 60kDa spider toxin binding protein from bovine brain was solubilized with digitonin and purified up to 5800-folds over starting crude homogenate. The purification procedure entailed DEAE-cellulose, concanavalin-A affinity, 1-naphthylacetyl spermine affinity and high performance liquid chromatography. The purified protein owned a very high affinity for ligand 125I-JSTX-3 binding Kd 15.6nM and Bmax 6.5nM. The amino acid composition of the protein was determined. The N-terminal amino acid sequence analysis yielded a unique sequence: NH2-X-Pro-X-Val-Tyr-Phe-Lys-Glu-Gln-Phe-Leu-Asp-Gly-Asp-X.  相似文献   

17.
The pressure stability of the thermophilic CYP119 from Sulfolobus solfataricus and its active-site Thr213 and Thr214 mutants was investigated. At 20 degrees C and pH 6.5, the protein undergoes a reversible P450-to-P420 inactivation with a midpoint at 380 MPa and a reaction volume change of -28 mL/mol. The volume of activation of the process was -9.5 mL/mol. The inactivation transition was retarded, and the absolute reaction volume was decreased by increasing temperature or by mutations that decrease the size of the active-site cavity. High pressure affected the tryptophan fluorescence yield, which decreased by about 37% at 480 MPa. The effect was reversible and suggested considerable contraction of the protein. Aerobic decomposition of iron-aryl complexes of the CYP119 T213A mutant under increasing hydrostatic pressure resulted in variation of the N-arylprotoporphyrin-IX regioisomer (N(B):N(A):N(C):N(D)) adduct pattern from 39:47:07:07 at 0.1 MPa to 23:36:14:27 at 400 MPa. Preincubation of the protein at 400 MPa followed by complex formation and decomposition gave the same regioisomer distribution as untreated protein. The results indicate that the protein is reversibly inactivated by pressure, in contrast to the irreversible inactivation of P450(cam) and other P450 enzymes, and that this inactivation process is modulated by changes in the active-site cavity dimensions.  相似文献   

18.
19.
《Chemical physics letters》1987,137(6):533-536
A 23Na and 31P NMR study of the Na-DNA and Na-DNA-Ni systems in aqueous solution has been undertaken. Analysis of the relaxation rates provides evidence that Ni2+ displaces Na+ ions from the condensation layer of Na-DNA. Furthermore, it was found that Ni2+ binds specifically to the DNA phosphate to some extent and that multiple chemical equilibria are involved in the interactions.  相似文献   

20.
Although the non-covalent interactions between proteins and salts contributing to the Hofmeister effects have been generally mapped, there are many questions regarding the specifics of these interactions. We report here studies involving the small protein ubiquitin and salts of polarizable anions. These studies reveal a complex interplay between the reverse Hofmeister effect at low pH, the salting-in Hofmeister effect at higher pH, and six anion binding sites in ubiquitin at the root of these phenomena. These sites are all located at protuberances of preorganized secondary structure, and although stronger at low pH, are still apparent when ubiquitin possesses no net charge. These results demonstrate the traceability of these Hofmeister phenomena and suggest new strategies for understanding the supramolecular properties of proteins.

Studying the supramolecular properties of Ubiquitin reveals six anion binding sites that contribute to the reverse Hofmeister effect at low pH and the salting-in Hofmeister effect at higher pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号