首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It usually writes the boundary condition of the wave equation in the Coulomb field as a rough form without considering the size of the atomic nucleus. The rough expression brings on that the solutions of the Klein-Gordon equation and the Dirac equation with the Coulomb potential are divergent at the origin of the coordinates, also the virtual energies, when the nuclear charges number Z>137, meaning the original solutions do not satisfy the conditions for determining solution. Any divergences of the wave functions also imply that the probability density of the meson or the electron would rapidly increase when they are closing to the atomic nucleus. What it predicts is not a truth that the atom in ground state would rapidly collapse to the neutron-like. We consider that the atomic nucleus has definite radius and write the exact boundary condition for the hydrogen and hydrogen-like atom, then newly solve the radial Dirac-Coulomb equation and obtain a new exact solution without any mathematical and physical difficulties. Unexpectedly, the K value constructed by Dirac is naturally written in the barrier width or the equivalent radius of the atomic nucleus in solving the Dirac equation with the exact boundary condition, and it is independent of the quantum energy. Without any divergent wave function and the virtual energies, we obtain a new formula of the energy levels that is different from the Dirac formula of the energy levels in the Coulomb field.  相似文献   

2.
Σ-原子能级的理论计算与分析   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对Σ-原子的理论分析,数值求解了相应的Dirac方程,得到 了一组Σ-原子的能级值,与实验数据相当吻合;其结果连同K-原子的情况支持了Batty 光学模型势在奇异原子中应用的正确性,进而表明核子间的强相互作用力为吸引力.  相似文献   

3.
We obtain exact solution of the Dirac equation with the Coulomb potential as an infinite series of square integrable functions. This solution is for all energies, the discrete as well as the continuous. The spinor basis elements are written in terms of the confluent hypergeometric functions and chosen such that the matrix representation of the Dirac-Coulomb operator is tridiagonal. The wave equation results in a three-term recursion relation for the expansion coefficients of the wavefunction which is solved in terms of the Meixner-Pollaczek polynomials.  相似文献   

4.
In this work we study in detail the connection between the solutions to the Dirac and Weyl equations and the associated electromagnetic four-potentials.First,it is proven that all solutions to the Weyl equation are degenerate,in the sense that they correspond to an infinite number of electromagnetic four-potentials.As far as the solutions to the Dirac equation are concerned,it is shown that they can be classified into two classes.The elements of the first class correspond to one and only one four-potential,and are called non-degenerate Dirac solutions.On the other hand,the elements of the second class correspond to an infinite number of four-potentials,and are called degenerate Dirac solutions.Further,it is proven that at least two of these fourpotentials are gauge-inequivalent,corresponding to different electromagnetic fields.In order to illustrate this particularly important result we have studied the degenerate solutions to the forcefree Dirac equation and shown that they correspond to massless particles.We have also provided explicit examples regarding solutions to the force-free Weyl equation and the Weyl equation for a constant magnetic field.In all cases we have calculated the infinite number of different electromagnetic fields corresponding to these solutions.Finally,we have discussed potential applications of our results in cosmology,materials science and nanoelectronics.  相似文献   

5.
Quaternion Dirac equation has been analyzed and its supersymmetrization has been discussed consistently. It has been shown that the quaternion Dirac equation automatically describes the spin structure with its spin up and spin down components of two component quaternion Dirac spinors associated with positive and negative energies. It has also been shown that the supersymmetrization of quaternion Dirac equation works well for different cases associated with zero mass, nonzero mass, scalar potential and generalized electromagnetic potentials. Accordingly we have discussed the splitting of supersymmetrized Dirac equation in terms of electric and magnetic fields.  相似文献   

6.
The Dirac equation in a curved spacetime depends on a field of coefficients (essentially the Dirac matrices), for which a continuum of different choices are possible. We study the conditions under which a change of the coefficient fields leads to an equivalent Hamiltonian operator H, or to an equivalent energy operator E. We do that for the standard version of the gravitational Dirac equation, and for two alternative equations based on the tensor representation of the Dirac fields. The latter equations may be defined when the spacetime is four‐dimensional, noncompact, and admits a spinor structure. We find that, for each among the three versions of the equation, the vast majority of the possible coefficient changes do not lead to an equivalent operator H, nor to an equivalent operator E, whence a lack of uniqueness. In particular, we prove that the Dirac energy spectrum is not unique. This non‐uniqueness of the energy spectrum comes from an effect of the choice of coefficients, and applies in any given coordinates.  相似文献   

7.
We consider various gauge fields coupled to the free Dirac equation according to symmetry principles. The gauge fields are treated as classical, unquantized fields. Sufficiently strong time-independent fields may give rise to spontaneous particle creation and to the decay of the symmetric Dirac vacuum into a new ground state with broken symmetry. The vacuum stability of the Dirac field is studied for the cases of external electromagnetic (U(1)), gravitational (Poincaré group including torsion) and Yang-Mills (SU(2)) potentials.  相似文献   

8.
We generalize the well-known lower estimates for the first eigenvalue of the Dirac operator on a compact Riemannian spin manifold proved by Friedrich [Math. Nachr. 97 (1980) 117–146] and Hijazi [Math. Phys. 104 (1986) 151–162; J. Geom. Phys. 16 (1995) 27–38]. The special solutions of the Einstein–Dirac equation constructed recently by Friedrich/Kim are examples for the limiting case of these inequalities. The discussion of the limiting case of these estimates yields two new field equations generalizing the Killing equation as well as the weak Killing equation for spinor fields. Finally, we discuss the two-and three-dimensional case in more detail.  相似文献   

9.
We find exact solutions to the Dirac equation in D-dimensional de Sitter spacetime. Using these solutions we analytically calculate the de Sitter quasinormal (QN) frequencies of the Dirac field. For the massive Dirac field this computation is similar to that previously published for massive fields of half-integer spin moving in four dimensions. However to calculate the QN frequencies of the massless Dirac field we must use distinct methods in odd and even dimensions, therefore the computation is different from that already known for other massless fields of integer spin.  相似文献   

10.
We construct the d-dimensional “half” Schrödinger equation, which is a kind of the root of the Schrödinger equation, from the (d+1)-dimensional free Dirac equation. The solution of the “half” Schrödinger equation also satisfies the usual free Schrödinger equation. We also find that the explicit transformation laws of the Schrödinger and the half Schrödinger fields under the Schrödinger symmetry transformation are derived by starting from the Klein-Gordon equation and the Dirac equation in d+1 dimensions. We derive the 3- and 4-dimensional super-Schrödinger algebra from the superconformal algebra in 4 and 5 dimensions. The algebra is realized by introducing two complex scalar and one (complex) spinor fields and the explicit transformation properties have been found.  相似文献   

11.
The search for exact solutions of the Dirac equation begun in [1] is continued. We find three new types of external electromagnetic fields where the Dirac equation, Klein-Gordon equation, and classical Lorentz equation can be solved exactly. We find fields for which explicit solutions to the Klein-Gordon equation can be found but for which explicit solutions of the Dirac equation cannot.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 81–86, January, 1985.  相似文献   

12.
The power of the Dirac algebra is illustrated through the Kähler correspondence between a pair of Dirac spinors and a 16-component bosonic field. The SO(5, 1) group acts on both the fermion and boson fields, leading to a supersymmetric equation of the Dirac type involving all these fields.  相似文献   

13.
We show that the mathematical relation between non-abelian anomalies in 2n dimensions, the parity anomaly in 2n+1 dimensions, and the Dirac index density in 2n+2 dimensions can be understood in terms of the physics of fermion zero modes on strings and domain walls. We show that the Dirac equation possesses chiral zero modes in the presence of strings in 2n+2 dimensions (such as occur in axion theories) or domain walls in 2n+1 dimensions. We show that the anomalies due to the chiral zero modes are exactly cancelled by anomalies due to the coupling of axion-like fields to the Dirac index density or by anomalies due to the induced topological mass term.  相似文献   

14.
Yue-Liang Wu 《中国物理C(英文版)》2017,41(10):103106-103106
The relativistic Dirac equation in four-dimensional spacetime reveals a coherent relation between the dimensions of spacetime and the degrees of freedom of fermionic spinors. A massless Dirac fermion generates new symmetries corresponding to chirality spin and charge spin as well as conformal scaling transformations. With the introduction of intrinsic W-parity, a massless Dirac fermion can be treated as a Majorana-type or Weyl-type spinor in a six-dimensional spacetime that reflects the intrinsic quantum numbers of chirality spin. A generalized Dirac equation is obtained in the six-dimensional spacetime with a maximal symmetry. Based on the framework of gravitational quantum field theory proposed in Ref. [1] with the postulate of gauge invariance and coordinate independence, we arrive at a maximally symmetric gravitational gauge field theory for the massless Dirac fermion in six-dimensional spacetime. Such a theory is governed by the local spin gauge symmetry SP(1,5) and the global Poincar′e symmetry P(1,5)= SO(1,5) P~(1,5) as well as the charge spin gauge symmetry SU(2). The theory leads to the prediction of doubly electrically charged bosons. A scalar field and conformal scaling gauge field are introduced to maintain both global and local conformal scaling symmetries. A generalized gravitational Dirac equation for the massless Dirac fermion is derived in the six-dimensional spacetime. The equations of motion for gauge fields are obtained with conserved currents in the presence of gravitational effects. The dynamics of the gauge-type gravifield as a Goldstone-like boson is shown to be governed by a conserved energy-momentum tensor, and its symmetric part provides a generalized Einstein equation of gravity. An alternative geometrical symmetry breaking mechanism for the mass generation of Dirac fermions is demonstrated.  相似文献   

15.
Properties of six-component electromagnetic field solutions of a matrix form of the Maxwell equations, analogous to the four-component solutions of the Dirac equation, are described. It is shown that the six-component equation, including sources, is invariant under Lorentz transformations. Complete sets of eigenfunctions of the Hamiltonian for the electromagnetic fields, which may be interpreted as photon wave functions, are given both for plane waves and for angular-momentum eigenstates. Rotationally invariant projection operators are used to identify transverse or longitudinal electric and magnetic fields. For plane waves, the velocity transformed transverse wave functions are also transverse, and the velocity transformed longitudinal wave functions include both longitudinal and transverse components. A suitable sum over these eigenfunctions provides a Green function for the matrix Maxwell equation, which can be expressed in the same covariant form as the Green function for the Dirac equation. Radiation from a dipole source and from a Dirac atomic transition current are calculated to illustrate applications of the Maxwell Green function.  相似文献   

16.
17.
Therelativistic lattice Klein-Gordon equation, Dirac equation, electromagnetic equations, and gauge field equations are presented as partialdifference equations. Various lattice Green's functions are constructed (except for non-abelian gauge fields). It is proved that many of the lattice Green's functions are non-singular or divergence-free. Moreover, it is conjectured that all lattice Green's functions are non-singular.  相似文献   

18.
Assuming the Born-Oppenheimer (clamped nuclei) approximation, basic properties of the Dirac operator for homonuclear two-centre one-electron systems are studied. This includes a rigorous analysis of the regularity of the potential energy curves as a function of the internuclear distance; in particular, for all values of the nuclear charge parameter that guarantee existence of a physically reasonable self-adjoint extension of the corresponding atomic Dirac-Coulomb operator, the continuity and differentiability of the electronic contribution to the potential energy curves are shown also to hold in the united atom limit. Furthermore, for nuclear charges not too large, the ground state united atom energy is demonstrated to provide a universal lower bound to all molecular energies within the discrete spectrum. Together with a generalization of the virial theorem to diatomic Dirac-Coulomb operators, this leads to a lower bound on the equilibrium separation between the nuclei. In addition, by employing appropriate variational arguments, the possibility of molecular bonding (for sufficiently large nuclear mass) is proved for all systems with charges up to those of the hydrogen molecular ion H2+.  相似文献   

19.
A Pauli theory (Pauli equation and definition of probability current and density) for a particle in weak metric and arbitrary electromagnetic fields is treated. To formulate non-relativistic quantum mechanical problems in arbitrary electromagnetic fields and weak metrics (non-inertial systems, gravitational fields which are distant fields of arbitrary distribution of masses, gravitational waves) it is not necessary to make use of the general-relativistic Dirac equation. Close analogies to the known Pauli theory with electromagnetic fields exist. For different metric fields the corresponding Hamiltonians are given. For quantum systems (H-atoms) which are disturbed by a homogeneous gravitational field and a gravitational wave the resulting shift of energy levels and the transition probability is calculated.  相似文献   

20.
We illustrate a metric formulation of Galilean invariance by constructing wave equations with gauge fields. It consists of expressing nonrelativistic equations in a covariant form, but with a five-dimensional Riemannian manifold. First we use the tensorial expressions of electromagnetism to obtain the two Galilean limits of electromagnetism found previously by Le Bellac and Lévy-Leblond. Then we examine the nonrelativistic version of the linear Dirac wave equation. With an Abelian gauge field we find, in a weak field approximation, the Pauli equation as well as the spin—orbit interaction and a part reminiscent of the Darwin term. We also propose a generalized model involving the interaction of the Dirac field with a non-Abelian gauge field; the SU(2) Hamiltonian is given as an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号