首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently we studied time dependent structural changes that are coupled with flow instabilities (Fischer 1998; Wheeler 1998; Fischer 2000). Within a stability analysis, a classification scheme for the feedback circuit of coupled shear-induced structure and flow instabilities was derived by Schmitt et al. (1995) and applied to our samples. Here, inhomogeneous flow layers of different concentration and viscosity are generated by shear-induced diffusion (spinodal demixing) and, as consequence, one no longer observes a homogeneous solution but a type of shear banding that is seen here for the first time. In this paper we present the behaviour of the first normal stress difference observed in the critical shear-rate regime where transient shear-induced structure is coupled with flow instability. Similar to the oscillations of the shear stresses (strain-controlled rheometer) one observes oscillations in the first normal stress difference. This behaviour indicates that elastic structures are built up and destroyed while the shear-induced structures occur and that the induced phase is more elastic than the initial one. Oscillations of shear stress and first normal stress difference are in phase and indicate that both phenomena are caused by the same mechanism. Received: 30 June 1999/Accepted: 14 December 1999  相似文献   

2.
A structural model for thixotropy of colloidal dispersions   总被引:1,自引:0,他引:1  
The present study proposes a structural model to describe the thixotropic behavior of colloidal dispersions. This model uses structural viscosity and elasticity as internal parameters, and predicts the evolution of shear stress when shear rate varies over time. Viscosity represents the structural level of colloidal aggregates and is dependent upon their alignment. Changes in alignment are linked to changes in shear rate, are regarded as instantaneous and are not believed to cause thixotropic behavior. Only changes in the structural level or structural viscosity and in the elastic deformation of colloidal aggregates cause measurable thixotropic behavior. Variations in structural viscosity over time, and at a fixed shear rate, follow a first-order kinetic equation based on two characteristic thixotropic times. This model incorporates several parameters, which are fitted independently by the appropriate rheological tests, in order to avoid any mathematical coupling. This model has been tested in 3 wt% Laponite aqueous dispersions using different ionic strengths.  相似文献   

3.
Knowledge of the viscosity of concentrated suspensions is required for several technical applications, e.g. process control in mechanical engineering, casting of ceramics and pipeline transport of solids. Our previous viscometric investigations of concentrated suspensions showed, under particular shear conditions, an apparent viscosity that was periodic in time for a constant shear rate and temperature. These results were obtained with rotational viscometers with a set coaxial geometry. The inner cylinder was rigidly coupled to the viscometer driving axis. In this paper we describe a viscosity time behavior which was found using another type of coupling. Measurements were performed with rotational viscometers with a non-rigidly linked inner cylinder (small sample adapter supplied by Brookfield). Using kaolin suspensions of 30% solid mass content, viscosity oscillations appear. They show a regular time pattern at certain intervals of low shear rates. The amplitudes reach up to 20% of the viscosity mean value. In addition a motion of the inner cylinder away from the coaxial position is observed. This dislocation is followed by a relocation into the coaxial position. A maximum in the viscosity value is correlated with a maximum of the dislocation position. The process of dislocation and relocation of the inner cylinder is assumed to be caused by local anisotropically distributed inhomogeneities, which originate from shear-induced agglomeration and deglomeration of suspended particles. The motion of the inner cylinder is described by introducing a perturbation term into the equation of motion. The parameters of the perturbation term are fitted to the experimental data. Received: 10 September 1998 Accepted: 28 April 1999  相似文献   

4.
Understanding flow properties and flow effects of liquid and semisolid aluminum became a key solution for know-how of the casting processes. It is essential to find and study a new solution of interactive and efficient structure control of processed aluminum suspension. This task was solved by an adaptation of an electromagnetic actuator and high-resolution tempering unit to a conventional rotational rheometer. Initially, the research reveals a precise detection of transition temperatures in steady and transient shear flow. It was found that superposition of mechanical vibration orthogonal to the shear flow radically decreases shear viscosity of semisolid slurry. However, liquid state rheological properties show structural behavior, but stayed insensitive to mechanical oscillations. Analysis of boundary conditions before fundamental experiment shows that no considerable side effects were present during the experiment under vibration. The study reveals transition of strongly shear-thinning concentrated aluminum suspension to almost Newtonian fluid under vibration in shear flow. It is recommended to relate such phenomenon to non-equilibrium between structure formation and structure break-up under vibration and hydrodynamic forces of shear flow. The results illustrate how sensitive the structure of slurry is to vibration in general and in particular during the solidification phase. The revealed results provide a solid basis for further fundamental investigations.  相似文献   

5.
Light scattering calculations based on Anomalous Diffraction Theory (AD), Rayleigh spheroids, and flexible macromolecules are used to propose a phenomenological explanation for the relationship between shear-thickening and structure formation in polymer solutions. Quantitative comparisons are made to experimental data for the rheo-optical behavior of fractionated polystyrene solutions presented in part I of this paper. Results from the ADA calculations suggest that the viscosity and dichroism behavior can be attributed to the production and growth of micron-size, optically isotropic structures during flow. The saturation dichroism behavior exhibited by the solutions which shear thin can be attributed to the formation of entanglement regions which achieve a fixed size and act as Rayleigh spheroids in their scattering behavior. The magnitude and shear rate dependence of the observed birefringence can be accounted for on the basis of the non-linear, flexible macromolecule model, implying that birefringence is governed by the polymer chains remaining in solution which do not take part in the structure formation. The latter result is consistent with the experimental observation that the birefringence dependence on shear rate is the same whether the solution exhibits shear thickening or shear thinning in its viscosity behavior.  相似文献   

6.
A multifunctional epoxide chain extender (ADR4370S) was used to increase the molecular weight of poly(trimethylene terephthalate) (PTT). And the effects of ADR4370S content on the molecular structure, melt viscosity, and rheological properties of PTT were studied. It is found that a star-type topological structure is formed in PTT by introduction of ADR4370S, and the balance torque, intrinsic viscosity, and molecular weight are increased by increasing ADR4370S dosage. The rheological measurement results show that the elastic modulus, complex viscosity, and shear thinning behavior of long-chain branching PTT are increased with the concentration of ADR4370S. The presence of broadened relaxation time spectrum and a long relaxation time mode for the PTT with 1.50 wt% ADR4370S demonstrate that the cross-linking reaction occurs, and the gel forms in the PTT system.  相似文献   

7.
The rheological properties of a series of lightly crosslinked carboxy copolymers in aqueous solutions have been evaluated in steady shear and dynamic oscillatory modes. Viscosity profiles and the behavior of storage modulus are related to the chemical composition of the copolymers and their crosslinking density. A maximum in viscosity and in storage modulus which depends on the type of crosslinking agent used is explained by a combination of a chain entanglement mechanism and a closely-packed spheres model. The recovery of viscosity and storage modulus after shearing is very fast and is related to the very fast rearrangement of the microgel structure as a function of time.  相似文献   

8.
An experimental investigation was undertaken to determine the role of solution structure on the apparent thickening exhibited by “dilute” polyethylene oxide/water solutions in extensional flow. Measurements of apparent relative viscosity were obtained as a function of wall shear rate for solutions flowing from a reservoir through a 0.1 mm internal diameter tube. As the wall shear rate was increased, slightly shear thinning behavior was observed up until a critical wall shear rate was exceeded at which point a large increase in relative viscosity was seen. Other researchers have observed these apparent thickening effects and have interpreted them in terms of individual polymer molecules undergoing coil-stretch transitions. However, in the systems used in this study, the critical wall shear rate and the degree to which relative viscosity increased wer both seen to be strong functions of solution aging time and concentration. These results are inconsistent with the simple picture of individual polymer coils undergoing a coil-stretch transition and instead are consistent with the picture of aggregated systems or micronetworks being stretched from their equilibrium configurations.  相似文献   

9.
It is shown that extended irreversible thermodynamics can be used to account for the shear rate and frequency dependences of several material functions like shear viscosity, first and second normal stress coefficients, dynamic viscosity and storage modulus. Comparison with experimental data on steady shearing and small oscillatory shearing flows is performed. A good agreement between the model and experiment is reached in a wide scale of variation of the shear rate and the frequency of oscillations. The relation between the present model which includes quadratic terms in the pressure tensor and the Giesekus model is also examined.  相似文献   

10.
Experiments are performed to study the change in the fluid structure that decreases the effective viscosity of samples of a high-viscosity polar fluid (glycerin) and a polymer (Plexiglas) under shear loading. Empirical relations are proposed for estimating the behavior of viscosity decreasing in the course of loading versus time and governing parameters of the system.  相似文献   

11.
Concentrated hard sphere suspensions often show an interesting nonlinear behavior, called strain stiffening, in which the viscosity or modulus starts to increase at critical strain amplitude. Sudden increase of rheological properties is similar to shear thickening; however, the particle dynamics in the strain stiffening under oscillatory shear flow does not necessarily coincide with the mechanism of shear thickening under step shear flow. In this study, we have systematically investigated the nonlinear rheology of non-colloidal (>1???m) hard sphere suspensions dispersed in Newtonian fluid near liquid-and-crystal coexistence region in order to better understand the strain stiffening behavior. The suspensions near liquid-and-crystal coexistence region are known to locally form the closed packing structure. The critical strain amplitude which is the onset of strain stiffening was different for the storage and loss modulus. But they converged to each other as the suspension forms a more crystalline structure. The critical strain amplitude was independent of medium viscosity, imposed angular frequency, and particle size, but was strongly dependent upon particle volume fraction. The onset of strain stiffening was explained in terms of shear-induced collision due to particle motion in the closed packing structure. Nonlinear stress wave-forms, which reflect the micro-structural change, were observed with the onset of strain stiffening. During the strain stiffening, enhanced elastic stress before and after flow reversal was observed which originates from changes in the suspension microstructure. Nonlinearity of the shear stress in terms of Fourier intensity was extremely increased up to 0.55. Beyond the strain stiffening, the suspension responded liquid-like and the nonlinearity decreased but the elastic shear stress was still indicating the microstructure rearrangement within a cycle.  相似文献   

12.
The rheological and structural properties of perfluoropolyether (PFPE) lubricant films including viscosity, shear stress, and birefringence were measured at relatively low to extremely high shear rates using a rotational optical rheometer. The viscosity of various films with different thicknesses exhibit Newtonian behavior up to a shear rate 1 × 104 s−1, with a transition to shear-thinning behavior obvious at higher shear rates. Birefringence of these films was also measured for the first time, and these results indicate chain alignment with shear in the shear-thinning regime. The shear rate at which alignment occurs is similar to that of the onset of shear thinning. This correlation between chain alignment and shear thinning provides direct evidence that the ability of PFPEs to lubricate hard drives at high shear rates is a direct consequence of the ability of the applied shear field to align the molecules on a molecular level.  相似文献   

13.
Stress relaxation probing on the immiscible blends is an attractive route to reveal the time-dependent morphology–viscoelasticity correlations under/after flow. However, a comprehensive understanding on the stress relaxation of co-continuous blends, especially after subjected to a shear strain, is still lacking. In this work, the stress relaxation behavior of co-continuous polystyrene/poly(methyl methacrylate) (50/50) blends with different annealing times, strain levels, and temperatures was examined under step shear strain and was correlated with the development of their morphologies. It was found that co-continuous blends display a fast relaxation process which corresponded to the relaxation of bulk polymer and a second slower relaxation process due to the recovery of co-continuous morphology. The stress relaxation rates of co-continuous blends tend to decrease due to the coarsening of instable co-continuous structure during annealing. Furthermore, the stress relaxation of the co-continuous blends is strongly affected by the change of viscosity and interfacial tension caused by the temperature. The contribution of morphological coarsening, viscosity, and interfacial tension variation on the stress relaxation behavior of co-continuous blends was discussed based on the Lee–Park model and time–temperature superposition principle, respectively.  相似文献   

14.
Self-excited oscillations of flow past a cavity are generated in a shallow free-surface system. The shear layer past the cavity opening has two basic forms: a separated free-shear flow; and a shear flow along a slotted plate. Instabilities of these classes of shear flows can couple with the fundamental gravity-wave mode of the adjacent cavity. The dimensionless frequencies of both types of oscillations scale on the length of the cavity opening, rather than the gap distance between the slats, i.e., a large-scale instability is always prevalent. A technique of high-image-density particle image velocimetry allows acquisition and interpretation of global, instantaneous images of the flow pattern, including patterns of vorticity and Reynolds stress correlation. Use of a cinema approach provides representations of the timewise evolution of the global, instantaneous flow structure, and thereby definition of the amplitude peaks and phase angles of the coupled fluctuations via auto- and cross-spectral techniques. These methods, along with global, averaged representations of the fluctuating flow field, provide insight into the onset of fully coupled (phase-locked) oscillations of the shear flow past the resonator cavity. The common, as well as the distinctive, features of the resonant-coupled instability of the shear flow past the slotted plate are characterized, relative to the corresponding coupled instability of the free-shear layer. Varying degrees of resonant coupling between the unstable shear layer and the adjacent resonator are attained by variations of the inflow velocity, which yield changes of the predominant oscillation frequency, relative to the resonant frequency of the adjacent cavity. Well-defined, coherent oscillations are indeed attainable for the case of the shear flow along the slotted plate, though their amplitude is significantly mitigated relative to the case of a free-shear layer. The degree of organization of the self-excited, resonant-coupled oscillation and the manner in which it varies with open area ratio and geometry of the plate are interpreted in terms of the flow structure on either side of, and within, the slotted plate; these features are compared with the corresponding structure of the free-shear layer oscillations.  相似文献   

15.
国产润滑脂流变参数的确定与研究   总被引:9,自引:6,他引:9  
王晓力 《摩擦学学报》1997,17(3):232-237
用HAAKE流变仪确定了9种具有不同稠化剂结构的润滑脂和7种具有不同基础油粘度及稠化剂含量的锂基脂的流变参考,考察了稠化剂的结构和含量,以及温度、基础油粘度睡剪切时间对流变参数的影响,对9种脂的触变性作了对比研究。结果表明:这种润滑脂的强度极限均随温度升高而降低,但其塑性粘度和塑性指数的变化均无规律性,不含添加剂的不同润滑脂随稠化剂含量的增大和基础油粘度的减小,其强度极限和塑性粘度都逐渐增大,而塑  相似文献   

16.
The rheological behavior of stable slurries is shown to be characterized by a bimodal model that represents a slurry as made up of a coarse fraction and a colloidal size fine fraction. According to the model, the two fractions behave independently of each other, and the non-Newtonian behavior of the viscosity is solely caused by the colloidal fraction, while the coarse fraction increases the viscosity level through hydrodynamic interactions. Data from experiments run with colloidal coal particles of about 2–3 µm average size dispersed in water show the viscosity of these colloidal suspensions to exhibit a highly shearrate-dependent behavior and, in the high shear limit, to match very closely the viscosity of suspensions of uniform size rigid spheres although the coal volume fraction must be determined semi-empirically. Different amounts of coarse coal particles are added to the colloidal suspension and the viscosity of the truly bimodal slurries measured as a function of shear rate. In agreement with the bimodal model, the measured shear viscosities show the coarse fraction to behave independently of the colloidal fraction and its contribution to the viscosity rise to be independent of the shear rate. It is shown that the shear rate exerted on the colloidal fraction is higher than that applied by the viscometer as a result of hydrodynamic interactions between the coarse particles, and that it is this effective higher shear rate which is necessary to apply in the correlations. For determining the coal volume fraction a relatively simple and quite accurate measurement technique is developed for determining the density and void fraction of coarse porous particles; the technique directly relates volume fraction to mass fraction.  相似文献   

17.
We investigate the behavior of fluid–particle mixtures subject to shear stress, by mean of direct simulation. This approach is meant to give some hints to explain the influence of interacting red cells on the global behavior of the blood. We concentrate on the apparent viscosity, which we define as a macroscopic quantity which characterizes the resistance of a mixture against externally imposed shear motion. Our main purpose is to explain the non-monotonous variations of this apparent viscosity when a mixture of fluid and interacting particles is submitted to shear stress during a certain time interval. Our analysis of these variations is based on preliminary theoretical remarks, and some computations for some well-chosen static configurations. To cite this article: A. Lefebvre, B. Maury, C. R. Mecanique 333 (2005).  相似文献   

18.
A viscosity model for suspensions of rigid particles with predictive capability over a wide range of particle volume fraction and shear conditions is of interest to quantify the transport of suspensions in fluid flow models. We study the shear viscosity of suspensions and focus on the effect of particle aspect ratio and shear conditions on the rheological behavior of suspensions of rigid bi-axially symmetric ellipsoids (spheroids). We propose a framework that forms the basis to microscopically parameterize the evolution of the suspension microstructures and its effect on the shear viscosity of suspensions. We find that two state variables, the intrinsic viscosity in concentrated limit and the self-crowding factor, control the state of dispersion of the suspension. A combination of these two variables is shown to be invariant with the imposed shear stress (or shear rate) and depends only on the particle aspect ratio. This self-similar behavior, tested against available experimental and numerical data, allows us to derive a predictive model for the relative viscosity of concentrated suspensions of spheroids subjected to low (near zero) strain rates. At higher imposed strain rates, one needs to constrain one of the state variables independently to constrain the state of dispersion of the suspension and its shear dynamic viscosity. Alternatively, the obtained self-similar behavior provides the means to estimate the state variables from the viscosity measurements made in the laboratory, and to relate them to microstructure rearrangements and evolution occurring during deformation.  相似文献   

19.
The influence of shear thinning on drop deformation is examined through a numerical simulation. A two‐dimensional formulation within the scope of the boundary element method (BEM) is proposed for a drop driven by the ambient flow inside a channel of a general shape, with emphasis on a convergent–divergent channel. The drop is assumed to be shear thinning, obeying the Carreau–Bird model and the suspending fluid is Newtonian. The viscosity of the drop at any time is estimated on the basis of a rate‐of‐strain averaged over the region occupied by the drop. The viscosity thus changes from one time step to the next, and it is strongly influenced by drop deformation. It is found that small drops, flowing on the axis, elongate in the convergent part of the channel, then regain their spherical form in the divergent part; thus confirming experimental observations. Newtonian drops placed off‐axis are found to rotate during the flow with the period related to the initial extension, i.e. to the drop aspect ratio. This rotation is strongly prohibited by shear thinning. The formulation is validated by monitoring the local change of viscosity along the interface between the drop and the suspending fluid. It is found that the viscosity averaged over the drop compares, generally to within a few per cent, with the exact viscosity along the interface.  相似文献   

20.
In order to find the relationships between processibility and properties of the polypropylene/ethylene vinyl alcohol copolymer (PP/EVOH) blends, their rheological behavior, in both shear and extensional flows, was studied and related with mechanical, morphological, and barrier properties of the materials. The nonlinear viscoelastic behavior in shear was also analyzed. The data showed that the rheological parameters (viscosity, loss modulus, storage modulus, extensional viscosity, and Trouton ratio) improved with the addition of low quantities of sodium ionomer copolymer used as compatibilizer. At the same time, the overall properties of the PP/EVOH blends improved as a result of the compatibilizer addition. The morphological analysis showed that the changes in the material properties were related with a more uniform distribution of EVOH particles in the PP matrix. The rheological data obtained allowed us to choose the optimal range for EVOH and ionomer contents, especially in terms of combining good processing characteristics with the good final properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号