首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-scale plasma was created in gas mixtures containing carbon monoxide by high-power laser-induced dielectric breakdown (LIDB). The composition of the mixtures used corresponded to a cometary and/or meteoritic impact into the Earth's early atmosphere. A multiple-centimeter-sized fireball was created by focusing a single 85 J, 450 ps near-infrared laser pulse into the center of a 15 L gas cell. The excited reaction intermediates that formed in various stages of the LIDB plasma chemical evolution were investigated by optical emission spectroscopy (OES) with temporal resolution. Special attention was paid to any OES signs of molecular ions. However, carbon monoxide cations were registered only if their production was enhanced by Penning ionization, i.e., excess He was added to the CO. The chemical consequences of laser-produced plasma generation in a CO-N 2-H 2O mixture were investigated using high resolution Fourier-transform infrared absorption spectroscopy (FTIR) and gas chromatography (GC). Several simple inorganic and organic compounds were identified in the reaction mixture exposed to ten laser sparks. H 2 (18)O was used to avoid possible contamination. The large laser spark triggered more complex reactivity originating in carbon monoxide than expected, when taking into account the strong triple bond of carbon monoxide causing typically inefficient dissociation of this molecule in electrical discharges.  相似文献   

2.
High resolution kinetic energy release spectra were obtained for C(+) and O(+) from CO multiphoton ionization followed by dissociation of CO(+). The excitation was through the CO (B (1)Sigma(+)) state via resonant two-photon excitation around 230 nm. A total of 5 and 6 photons are found to contribute to the production of carbon and oxygen cations. DC slice and Megapixel ion imaging techniques were used to acquire high quality images. Major features in both O(+) and C(+) spectra are assigned to the dissociation of some specific vibrational levels of CO(+)(X (2)Sigma(+)). The angular distributions of C(+) and O(+) are very distinct and those of various features of C(+) are also different. A dramatic change of the angular distribution of C(+) from dissociation of CO(+)(X (2)Sigma(+), nu(+) = 1) is attributed to an accidental one-photon resonance between CO(+)(X (2)Sigma(+), nu(+) = 1) and CO(+)(B (2)Sigma(+), nu(+) = 0) and explained well by a theoretical model. Both kinetic energy release and angular distributions were used to reveal the underlying dynamics.  相似文献   

3.
We describe the application of frequency modulated spectroscopy (FMS) with an external cavity tuneable diode laser to the study of the scalar and vector properties of inelastic collisions. CN X(2)Sigma(+) radicals are produced by polarized photodissociation of ICN at 266 nm, with a sharp velocity and rotational angular momentum distribution. The collisional evolution of the distribution is observed via sub-Doppler FMS on the A(2)Pi-X(2)Sigma(+) (2,0) band. He, Ar, N(2), O(2) and CO(2) were studied as collider gases. Doppler profiles were acquired in different experimental geometries of photolysis and probe laser propagation and polarization, and on different spectroscopic branches. These were combined to give composite Doppler profiles from which the speed distributions and specific speed-dependent vector correlations could be determined. The angular scattering dynamics with species other than He are found to be very similar, dominated by backward scattering which accompanies transfer of energy between rotation and translation. The kinematics of collisions with He are not conducive to the determination of differential scattering and angular momentum polarization correlations. Angular momentum correlations show interesting differences between reactive and non-reactive colliders. We propose that this reflects differences in the potential energy surfaces, in particular, the nature and depth of attractive potential wells.  相似文献   

4.
The plasma chemistry of NO has been investigated in gas mixtures with oxygen and/or hydrocarbon and Ar as carrier gas. Surface wave discharges operating at microwave frequencies have been used for this study. The different plasma reactions have been analyzed for a pressure range between 30 and 75 Torr. Differences in product concentration and/or reaction yields smaller than 10% were found as a function of this parameter. The following gas mixtures have been considered for investigation: Ar/NO, Ar/NO/O2, Ar/NO/CH4, Ar/CH4/O2, Ar/NO/CH4/O2. It is found that NO decomposes into N2 and O2, whereas other products such as CO, H2, and H2O are also formed when CH4 and O2 are present in the reaction mixture. Depending on the working conditions, other minority products such as HCN, CO2, and C2 or higher hydrocarbons have been also detected. The reaction of an Ar/NO plasma with deposits of solid carbon has also been studied. The experiments have provided useful information with respect to the possible removal of soot particles by this type of plasma. It has been shown that carbon deposits are progressively burned off by interaction with the plasma, and practically 100% decomposition of NO was found. Plasma intermediate species have been studied by optical emission spectroscopy (OES). Bands and/or peaks due to N2*, NO*, OH*, C2*, CN*, CH*, or H* were detected with different relative intensities depending on the gas mixture. From the analysis of both the reaction products and efficiency and the type of intermediate species detected by OES, different plasma reactions and processes are proposed to describe the plasma chemistry of NO in each particular mixture of gases. The results obtained provide interesting insights about the plasma removal of NO in real gas exhausts.  相似文献   

5.
In this paper, continuing previous work, we report on experiments carried out to investigate the removal of NO from simulated flue gas in nonthermal plasmas. The plasma-induced decomposition of small concentrations of NO in N2 used as the carrier gas and O2 and CH4 as minority components has been studied in a surface wave discharge induced with a surfatron launcher. The reaction products and efficiency have been monitored by mass spectrometry as a function of the composition of the mixture. NO is effectively decomposed into N2 and O2 even in the presence of O2, provided always that enough CH4 is also present in the mixture. Other majority products of the plasma reactions under these conditions are NH3, CO, and H2. In the absence of O2, decomposition of NO also occurs, although in that case HCN accompanies the other reaction products as a majority component. The plasma for the different reaction mixtures has been characterized by optical emission spectroscopy. Intermediate excited species of NO*, C*, CN*, NH*, and CH* have been monitored depending on the gas mixture. The type of species detected and their evolution with the gas composition are in agreement with the reaction products detected in each case. The observations by mass spectrometry and optical emission spectroscopy are in agreement with the kinetic reaction models available in literature for simple plasma reactions in simple reaction mixtures.  相似文献   

6.
The propagation of carbon laser plasma during its expansion in vacuum and in a nitrogen atmosphere was studied with the use of an Nd : YAG laser (λ = 532 nm, τ = 15 ns). The presence of C2, C3, and CN molecules was detected in emission spectra, and the space and time characteristics of their propagation were determined. The vibrational temperatures of C2 and CN molecules were calculated.  相似文献   

7.
A technique using the broadband emission of a laser plume as probe radiation is applied to record UV-visible (190-510 nm) absorption spectra of Ne, Ar, and Kr, pure and in binary mixtures under moderate e-beam excitation up to 1?MW/cm(3). In all the rare gases and mixtures, the absorption spectra show continuum related to Rg(2) (+) homonuclear ions [peaking at λ~285, 295, and 320 nm in Ne, Ar, and Kr(Ar/Kr), respectively] and a number of atomic lines related mainly to Rg(?)(ms) levels, where m is the lowest principal quantum number of the valence electron. In argon, a continuum related to Ar(2) (?) (λ~325?nm) is also recorded. There are also trains of narrow bands corresponding to Rg(2) (?)(npπ?(3)Π(g))←Rg(2) (?)(msσ?(3)Σ(u) (+)) transitions. All the spectral features mentioned above were reported in literature but have never been observed simultaneously. Although charge transfer to a homonuclear ion of the heavier additive is commonly believed to dominate in binary rare-gas mixtures, it is found in this study that in Ne/Kr mixture, the charge is finally transferred from the buffer gas Ne(2) (+) ion not to Kr(2) (+) but to heteronuclear NeKr(+) ion.  相似文献   

8.
Polarized laser photolysis of ICN is combined with saturated optical pumping to prepare state-selected CN Alpha(2)Pi (nu' = 4, J = 0.5, F(2), f) with a well-defined anisotropic superthermal speed distribution. The collisional evolution of the prepared state is observed by Doppler-resolved Frequency Modulated (FM) spectroscopy via stimulated emission on the CN Alpha(2)Pi-Chi(2)Sigma(+) (4,2) band. The phenomenological rate constants for removal of the prepared state in collisions with He, Ar, N(2) and O(2) are reported. The observed collision cross-sections are consistent with attractive forces contributing significantly for all the colliders with the exception of He. The collisional evolution of the prepared velocity distribution demonstrates that no significant back-transfer into the prepared level occurs, and that any elastic scattering is strongly in the forward hemisphere.  相似文献   

9.
O2/CO2循环燃烧方式下矿物元素蒸发特性的热力学研究   总被引:1,自引:0,他引:1  
运用热力学平衡计算方法(F*A*C*T)对O2/CO2循环燃烧方式下矿物元素的蒸发特性进行了研究,并采用高温热天平进行了实验验证。结果表明,各矿物元素蒸发的主要形态分别是Na(K)Cl(g), FeO(g)和SiO(g),反应气氛和温度对矿物元素蒸发形态和蒸发率有明显影响。O2/CO2循环燃烧方式下矿物元素的蒸发率均小于常规空气燃烧,尤其是还原性气氛中,当温度为2400 K时,常规空气燃烧矿物总蒸发率为9.65%,而O2/CO2循环燃烧方式矿物元素总蒸发率仅为4.46%。实验值比计算值略高,但主要趋势相同。  相似文献   

10.
The 4th positive and Cameron band emissions from electronically excited CO have been observed for the first time in 248-nm pulsed laser photolysis of a trace amount of CHBr(3) vapor in an excess of O atoms. O atoms were produced by dissociation of N(2)O (or O(2)) in a cw-microwave discharge cavity in 2.0 Torr of He at 298 K. The CO emission intensity in these bands showed a quadratic dependence on the laser fluence employed. Temporal profiles of the CO(A) and other excited-state products that formed in the photoproduced precursor + O-atom reactions were measured by recording their time-resolved chemiluminescence in discrete vibronic bands. The CO 4th positive transition (A(1)Pi, v' = 0 --> X(1)Sigma(+), v' ' = 2) near 165.7 nm was monitored in this work to deduce the pseudo-first-order decay kinetics of the CO(A) chemiluminescence in the presence of various added substrates (CH(4), NO, N(2)O, H(2), and O(2)). From this, the second-order rate coefficient values were determined for reactions of these substrates with the photoproduced precursors. The measured reactivity trends suggest that the prominent precursors responsible for the CO(A) chemiluminescence are the methylidyne radicals, CH(X(2)Pi) and CH(a(4)Sigma(-)), whose production requires the absorption of at least 2 laser photons by the photolysis mixture. The O-atom reactions with brominated precursors (CBr, CHBr, and CBr(2)), which also form in the photolysis, are shown to play a minor role in the production of the CO(A or a) chemiluminescence. However, the CBr(2) + O-atom reaction was identified as a significant source for the 289.9-nm Br(2) chemiluminescence that was also observed in this work. The 282.2-nm OH and the 336.2-nm NH chemiluminescences were also monitored to deduce the kinetics of CH(X(2)Pi) and CH(a(4)Sigma(-)) reactions when excess O(2) and NO were present.  相似文献   

11.
This study determined the local equivalence ratio of a CH4/air mixture in a laminar premixed flame using spark-induced breakdown spectroscopy (SIBS) with a fiber-coupled intensified charge coupled device (ICCD) spectrometer. Spectrally resolved emission spectra of plasma generated by a spark plug were investigated for their potential to measure local fuel concentrations in a premixed mixture. The influence of key parameters, such as the camera gate timing and spark energy, on the intensity of radical emission was illustrated. The intensity ratio of CN/NH had a greater sensitivity to the equivalence ratio than did that of CN/OH, and the local equivalence ratio could be obtained with high resolution by measuring the local intensity ratios of CN/NH. Moreover, a spark-plug sensor with an optical fiber was developed for application in spark-ignition engines. The atomic emission intensity during the breakdown and arc phases of spark discharge could be obtained using the fiber-optic spark-plug sensor. The Hα/O intensity showed better linearity than the CN/NH intensity ratio in lean mixtures. The results presented here confirm the use of SIBS as a diagnostic tool for spark-ignition engines.  相似文献   

12.
The behavior of molecules in different atmospheric microwave-induced plasmas (MIPs) has been studied by means of optical emission spectroscopy. This is in order to obtain more insight into molecular processes in plasmas and to investigate the feasibility of emission spectroscopy for the analysis of molecular compounds in gases, e.g. flue gases. Various molecular species (i.e. N2, CO2, H2O, SF6 and SO2) have been introduced into discharges in argon or in molecular gases such as carbon dioxide or nitrogen. The plasmas were created and sustained by a guide-surfatron or a torch in the power range of 150 W to 2 kW. Only nitrogen sometimes yielded observable emission from the non-dissociated molecule (first and second positive system). Using other molecular gases, only dissociation and association products were observed (i.e. atomic species and diatomic molecules such as CN, C2, CO, OH, NH and N2+). The intensities of these products have been studied as a function of the concentration of introduced molecules, the position in the plasma and the composition of the plasma environment. Since in most cases the same diatomic association products are seen, observed associated molecules can only to some extend be related to the molecules originally present in the plasma gas. Therefore, it will be difficult to use atmospheric microwave discharges for the analysis of gas mixtures under the experimental conditions studied.  相似文献   

13.
CO-NH(3) and CO-NH(3)-H(2)O ices at 25-130 K were bombarded by (252)Cf fission fragments ( approximately 65 MeV at the target surface) and the emitted secondary ions were analyzed by time-of-flight mass spectrometry (TOF-SIMS). It is observed that the mass spectra obtained from both ices have similar patterns. The production of hybrid ions (formed from CO and NH(3) molecules) emitted from CO-NH(3) ice has already been reported by R. Martinez et al., Int. J. Mass. Spectrom. 262 (2006) 195; here, the secondary ion emission and the modifications of the CO--NH(3) ice structure during the temperature increase of the ice are addressed. These studies are expected to throw light on the sputtering from planetary and interstellar ices and the possible formation of new organic molecules in CO-NH(3)-H(2)O ice by megaelectronvolt ion bombardment. The presence of water in the CO-NH(3) ice mixture generates molecular ion series such as (NH(3))(p-q)(H(2)O)(q)CO(+) and replaces the cluster series (NH(3))(n)NH(4) (+) emission by the hybrid series (NH(3))(I-i)(H(2)O)(i=1, 2...I)H(+). The distribution of NH(3) and H(2)O molecules within the cluster groups indicates that ammonia and water mix homogeneously in the icy condensate at T = 25 K. The desorption yield distribution of the cluster series (NH(3))(n)NH(4) (+) is described by the sum of two exponential functions: one, slow-decreasing, attributed to the fragmentation of the solid target into clusters; and another, fast-decreasing, due to a local sublimation followed by recombination of ammonia molecules. The analysis of the time-temperature dependence of these two yield components gives information on the formation process of molecular ions, the transient composition of the ice target and structural changes of the ice. Data suggest that the amorphous and porous structure of the NH(3) ice, formed by the condensation of the CO--NH(3) gas at T = 25 K, survives CO sublimation until the occurrence of a phase transition around 80 K, which produces a more fragile ice structure.  相似文献   

14.
The previously unknown arsenic carbide (AsC) free radical has been identified in the gas phase through a combination of laser-induced fluorescence (LIF), single vibronic level emission, and stimulated emission pumping (SEP) spectroscopy in a supersonic expansion. The As(12)C and As(13)C isotopologues have been detected as products of an electric discharge in mixtures of arsine (AsH(3)) and carbon dioxide ((12)CO(2) or (13)CO(2)) in high pressure argon. The B (2)Σ(+)-X (2)Σ(+) band system was recorded by LIF spectroscopy and emission transitions from the B state down to the ground state and to the low-lying A (2)Π(i) state were observed. High resolution studies of the B-X 0-0 band by LIF and the B-A 0-0 band by SEP spectroscopy enabled a determination of the molecular structures in the three states. Although CN, CP, and AsC have similar X (2)Σ(+) and A (2)Π(i) states, the B (2)Σ(+) state molecular orbital configuration of CP and AsC differs from that of the CN free radical.  相似文献   

15.
N2O laser gain profiles in a low-pressure Na-catalyzed N2OCO transverse-flow chemical laser have been measured for a variety of flow conditions. The small-signal gain depends on the CO/N2O ratio with a maximum of about 0.005 cm?1 measured to date. Analysis of emission spectra and computer modelling of the gain profiles indicate that 15-20% of the chemical energy is available for laser pumping, yielding a specific laser energy of approximately 210 J/mole of mixture.  相似文献   

16.
The CN-Ar van der Waals complex has been observed using the B (2)Sigma(+)-X (2)Sigma(+) and A (2)Pi-X (2)Sigma(+) electronic transitions. The spectra yield a dissociation energy of D(0")=102+/-2 cm(-1) and a zero-point rotational constant of B(0")=0.067+/-0.005 cm(-1) for CN(X)-Ar. The dissociation energy for CN(A)-Ar was found to be D(0')=125+/-2 cm(-1). Transitions to vibrationally excited levels of CN(B)-Ar dominated the B-X spectrum, indicative of substantial differences in the intermolecular potential energy surfaces (PESs) for the X and B states. Ab initio PESs were calculated for the X and B states. These were used to predict rovibrational energy levels and van der Waals bond energies (D(0")=115 and D(0')=183 cm(-1)). The results for the X state were in reasonably good agreement with the experimental data. Spectral simulations based on the ab initio potentials yielded qualitative insights concerning the B-X spectrum, but the level of agreement was not sufficient to permit vibronic assignment. Electronic predissociation was observed for both CN(A)-Ar and CN(B)-Ar. The process leading to the production of CN(A,nu=8,9) fragments from the predissociation of CN(B,nu=0)-Ar was characterized using time-resolved fluorescence and optical-optical double resonance measurements.  相似文献   

17.
We present the first results from a novel experimental approach to the measurement of state-to-state differential scattering cross-sections for inelastic scattering of electronically excited CN A(2)Pi with Ar. Photodissociation of ICN with linearly polarized 266 nm radiation generates CN X(2)Sigma(+) (upsilon(")=0,J(")) with a near mono-energetic speed distribution and large anisotropy. Saturated optical pumping of the nascent CN X(2)Sigma(+) transfers this speed distribution without distortion to selected rotational quantum states of the A(2)Pi (upsilon(')=4) level. The products of rotational energy transfer within the A(2)Pi (upsilon(')=4) level into the J(')=0.5, F(2), f, state are probed using frequency modulated stimulated emission spectroscopy on the A-X (4,2) band with a single frequency external cavity tunable diode laser. Doppler profiles of transitions from individual rotational, spin-orbit and lambda doublet specific levels are acquired for different geometrical arrangements of photolysis polarization and probe propagation directions. The resulting Doppler profiles, which for this J(')=0.5 state cannot display a rotational angular momentum alignment, are combined to yield composite Doppler profiles depending on speed and translational anisotropy, which are analyzed to determine fully state-to-state resolved differential scattering cross-sections.  相似文献   

18.
This paper provides a calculation method for carbon activity in CO-H2-H2O atmosphere. The thermodynamic parameters (αC>)gas (carbon activity in environment) of different compositions at any temperature can be obtained by ΔGoT. A theoretical analysis has been conducted into the thermodynamic role of iron and the dependence of possible metal-dusting occurrence on temperature, gas composition and total pressure. In CO-H2-H2O gas mixtures, decreasing the molar fraction of H2O and increasing total pressure expands the temperature region for metal dusting. In CO-H2-H2O gas mixture of different compositions at any temperature and pressure for Fe, depending on relative values of (αC)gas, (αC)Fe3C/Fe and αC=1, three zones were found to exist.  相似文献   

19.
Reaction of the microporous metal-organic framework Zn4O(BDC)3 (BDC2- = 1,4-benzenedicarboxylate) with Cr(CO)6 at 140 degrees C in a 6:1 mixture of dibutylether and THF affords Zn4O[(BDC)Cr(CO)3]3 (1). This compound retains the porous cubic structure of the parent framework, but features Cr(CO)3 groups attached in an eta6 fashion to all of the benzene rings. Compound 1 is also microporous, exhibiting a BET surface area of 2130 m2/g. It can be fully decarbonylated by heating at 200 degrees C, but the resulting gray solid (2) shows little affinity for N2 or H2 at 298 K, suggesting aggregation of the chromium atoms. In contrast, photolysis of 1 using 450-nm light in an atmosphere of N2 or H2 produces solids with infrared spectra indicative of Zn4O[(BDC)Cr(CO)2(N2)]3 (3) and Zn4O[(BDC)Cr(CO)2(H2)]3 (4). Under an N2 atmosphere, compound 4 completely converts into compound 3 over the course of 12 h, demonstrating the lability of the Cr0-H2 bond. Owing to isolation of the metal centers within the rigid, evacuable framework structures, the N2- and H2-substituted compounds show greatly enhanced stability relative to molecular analogues generated in frozen gas matrices or supercritical fluid solutions.  相似文献   

20.
Hydrogen uptake in hydrogenase enzymes can be assayed by H/D exchange reactivity in H(2)/D(2)O or H(2)/D(2)/H(2)O mixtures. Diiron(I) complexes that serve as structural models for the active site of iron hydrogenase are not active in such isotope scrambling but serve as precursors to Fe(II)Fe(II) complexes that are functional models of [Fe]H(2)ase. Using the same experimental protocol as used previously for ((mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-H(+) (Zhao et al. J. Am. Chem. Soc. 2001, 123, 9710), we now report the results of studies of ((mu-SMe)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-SMe(+), toward H/D exchange. The 1-SMe(+) complex can take up H(2) and catalyze the H/D exchange reaction in D(2)/H(2)O mixtures under photolytic, CO-loss conditions. Unlike 1-H(+), it does not catalyze H(2)/D(2) scrambling under anhydrous conditions. The molecular structure of 1-SMe(+) involves an elongated Fe.Fe separation, 3.11 A, relative to 2.58 A in 1-H(+). It is proposed that the strong SMe(-) bridging ligand results in catalytic activity localized on a single Fe(II) center, a scenario that is also a prominent possibility for the enzyme active site. The single requirement is an open site on Fe(II) available for binding of D(2) (or H(2)), followed by deprotonation by the external base H(2)O (or D(2)O).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号