首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the main recovery mechanisms behind oil/water/gas interactions during the water-alternating-gas (WAG) injection process, in a network of matrix/fracture, were fundamentally investigated. A visual micromodel was utilized to provide insights into the potential applications of WAG process in fractured oil-wet media as well as the possibility of observing microscopic displacement behavior of fluids in the model. The model was made of an oil-wet facture/matrix network system, comprised of four matrix blocks surrounded with fractures. Different WAG injection scenarios, such as slug arrangements and the effects of fluid injection rates on oil recovery were studied. A new equation representing the capillary number, considering the fracture viscous force and matrix capillary force, was developed to make the experimental results more similar to a real field. In general, WAG tests performed in the fractured model showed a higher oil recovery factor compared with the results of gas and water injection tests at their optimum rates. The results showed that the presence of an oil film, in all cases, was the main reason for co-current drainage and double displacement of oil under applied driving forces. Furthermore, the formation of oil liquid bridges improved the recovery efficiency, which was greatly influenced by the size of fracture connecting the two matrix blocks; these connecting paths were more stable when there was initial water remaining in the media. Analyzing different recovery curves and microscopic view of the three phases in the transparent model showed that starting an injection mode with gas (followed by repeated small slugs of water and gas), could considerably improve oil recovery by pushing water into the matrix zone and increasing the total sweep efficiency.  相似文献   

2.
Although a lot of research has been done in modeling the oil recovery from fractured reservoirs by countercurrent imbibition, less attention has been paid to the effect of the fracture fluid velocity upon the rate of oil recovery. Experiments are conducted to determine the effect of fracture flow rate upon countercurrent imbibition. A droplet detachment model is proposed to derive the effective water saturation in a thin boundary layer at the matrix–fracture interface. This effective boundary water saturation is a function of fluid properties, fluid velocity in the fracture and fracture width. For a highly water–wet porous medium, this model predicts an increase in the boundary water saturation with increase in fracture fluid velocity. The increase in boundary water saturation, in turn, increases the oil recovery rate from the matrix, which is consistent with the experimental results. The model also predicts that the oil recovery rate does not vary linearly with the boundary water saturation.  相似文献   

3.
It is well known that the oil recovery is affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of medium surfaces has remained a topic of debate in the literature. Furthermore, there is a little information of the way dispersed silica nanoparticles affect the oil recovery efficiency during polymer flooding, especially, when heavy oil is used. In this study, a series of injection experiments were performed in a five-spot glass micromodel after saturation with the heavy oil. Polyacrylamide solution and dispersed silica nanoparticles in polyacrylamide (DSNP) solution were used as injected fluids. The oil recovery as well as fluid distribution in the pores and throats was measured with analysis of continuously provided pictures during the experiments. Sessile drop method was used for measuring the contact angles of the glass surface at different states of wettability after coating by heavy oil, distilled water, dispersed silica nanoparticles in water (DSNW), polyacrylamide solution, and DSNP solution. The results showed that the silica nanoparticles caused enhanced oil recovery during polymer flooding by a factor of 10%. The distribution of DSNP solution during flooding tests in pores and throats showed strong water-wetting of the medium after flooding with this solution. The results of sessile drop experiments showed that coating with heavy oil, could make an oil-wet surface. Coating with distilled water and polymer solution could partially alter the wettability of surface to water-wet and coating with DSNW and DSNP could make a strongly water-wet surface.  相似文献   

4.
We have developed a mathematical model describing the process of microbial enhanced oil recovery (MEOR). The one-dimensional isothermal model comprises displacement of oil by water containing bacteria and substrate for their feeding. The bacterial products are both bacteria and metabolites. In the context of MEOR modeling, a novel approach is partitioning of metabolites between the oil and the water phases. The partitioning is determined by a distribution coefficient. The transfer part of the metabolite to oil phase is equivalent to its ”disappearance,” so that the total effect from of metabolite in the water phase is reduced. The metabolite produced is surfactant reducing oil–water interfacial tension, which results in oil mobilization. The reduction of interfacial tension is implemented through relative permeability curve modifications primarily by lowering residual oil saturation. The characteristics for the water phase saturation profiles and the oil recovery curves are elucidated. However, the effect from the surfactant is not necessarily restricted to influence only interfacial tension, but it can also be an approach for changing, e.g., wettability. The distribution coefficient determines the time lag, until residual oil mobilization is initialized. It has also been found that the final recovery depends on the distance from the inlet before the surfactant effect takes place. The surfactant effect position is sensitive to changes in maximum growth rate, and injection concentrations of bacteria and substrate, thus determining the final recovery. Different methods for incorporating surfactant-induced reduction of interfacial tension into models are investigated. We have suggested one method, where several parameters can be estimated in order to obtain a better fit with experimental data. For all the methods, the incremental recovery is very similar, only coming from small differences in water phase saturation profiles. Overall, a significant incremental oil recovery can be achieved, when the sensitive parameters in the context of MEOR are carefully dealt with.  相似文献   

5.
This work presents results from two sets of experiments conducted to study, in pore level, the role of fracture aperture and tilt angle on the stability of liquid bridges and the shape of a front during free gravity drainage process. Glass micromodels of two different aperture sizes were used to monitor the mechanism of gravity drainage of air?Ccrude oil system, rotating around a bottom corner to create different tilting angles. Oil content within the matrix blocks was determined as a function of time using a series of images obtained during the experiments, from which net drainage rate from the upper and lower matrix blocks is calculated. Liquid bridges are more frequent but less stable at early time of drainage. The liquid bridges, which have widths as thin as 50 ??m, can resist instability to maintain continuity. Liquid bridges formed in stacks with higher tilt angles are more stable, enhancing oil drainage from the upper matrix block and causing higher recoveries. Quantitative analysis of the results shows that a wider fracture aperture increases the oil production rate, but reduces the ultimate recovery. Furthermore, stacks with higher tilt angles present larger ultimate recoveries and smaller production rates. The front geometry in the lower block deviates from linearity due to formation of liquid bridges in the middle fracture. The results of this work can be helpful to better understand the interaction between fractures and matrix blocks.  相似文献   

6.
In this work, coreflood studies were carried out to determine the recovery benefits of low salinity waterflood compared to high salinity waterflood and the role of wettability in any observed recovery benefit. Two sets of coreflood experiments were conducted; the first set examined the EOR potential of low salinity floods in tertiary oil recovery processes, while the second set of experiments examined the secondary oil recovery potential of low salinity floods. Changes in residual oil saturation with variation in wettability, brine salinity and temperature were monitored. All the coreflood tests gave consistent increase in produced oil, corresponding to reduction in residual oil saturation and increase in water-wetness (for the second set of experiments) with decrease in brine salinity and increase in brine temperature.  相似文献   

7.
Experiments were performed to study the diffusion process between matrix and fracture while there is flow in fracture. 2-inch diameter and 6-inch length Berea sandstone and Indiana limestone samples were cut cylindrically. An artificial fracture spanning between injection and production ends was created and the sample was coated with heat-shrinkable teflon tube. A miscible solvent (heptane) was injected from one end of the core saturated with oil at a constant rate. The effects of (a) oil type (mineral oil and kerosene), (b) injection rates, (c) orientation of the core, (d) matrix wettability, (e) core type (a sandstone and a limestone), and (f) amount of water in matrix on the oil recovery performance were examined. The process efficiency in terms of the time required for the recovery as well as the amount of solvent injected was also investigated. It is expected that the experimental results will be useful in deriving the matrix–fracture transfer function by diffusion that is controlled by the flow rate, matrix and fluid properties.  相似文献   

8.
The effects of petrophysical matrix properties such as porosity and permeability on bypassed oil recovery were investigated during CO2 injection in fractures at different miscibility regimes (first-contact miscibility, near-miscibility, and immiscibility). A special experimental setup was designed for this purpose and a series of CO2 injection experiments were performed using two different types of porous media, sandstones and carbonates. To confirm the analysis, some tests were repeated in the presence of irreducible water saturation. In addition, dimensional analysis was used to capture the dominant forces and mechanisms.The results demonstrated that the highest oil recovery was achieved within near-miscible regime for the both rock types. Furthermore, in all miscibility regimes, the oil recovery factor decreased with the increase of the rock complexity and frequency of dead-end pores, whereas it declined as the permeability decreased. However, differences in recovery factors of near-critical and super-critical tests grew. Considering the analytical calculations and the results of experiments including initial water saturation, it can be concluded that near-critical point wetting and the number of dead-end pores have significant effects on variations of the oil recovery factor. With near-critical point wetting, maximum recovery was achieved at near-critical state, and the presence of dead-end pores caused the role of this mechanism to be more noticeable. As a result, differences in the recovery factor of near-critical and super-critical tests grew.  相似文献   

9.
Wettability alteration to intermediate gas-wetting in porous media by treatment with FC-759, a fluorochemical polymer has been studied experimentally. Berea sandstone was used as the main rock sample in our work, and its wettability before and after chemical treatment was studied at various temperatures from 25 to 93°C. We also studied recovery performance for both gas/oil and oil/water systems for Berea sandstone before and after wettability alteration by chemical treatment. Our experiment shows that chemical treatment with FC-759 can result in: (1) wettability alteration from strong liquid-wetting to stable intermediate gas-wetting at room temperature and at elevated temperatures; (2) neutral wetting for gas, oil, and water phases in two-phase flow; (3) significant increase in oil mobility for gas/oil system; and (4) improved recovery behavior for both gas/oil and oil/water systems. This work reveals a potential for field application for improved gas-well deliverability and well injectivity by altering the rock wettability around wellbore in gas condensate reservoirs from strong liquid-wetting to intermediate gas-wetting.  相似文献   

10.
Naturally fractured reservoirs contain about 25–30% of the world supply of oil. In these reservoirs, fractures are the dominant flow path. Therefore, a good understanding of transfer parameters such as relative permeability as well as flow regimes occurring in a fracture plays an important role in developing and improving oil production from such complex systems. However, in contrast with gas–liquid flow in a single fracture, the flow of heavy oil and water has received less attention. In this research, a Hele-Shaw apparatus was built to study the flow of water in presence of heavy oil and display different flow patterns under different flow rates and analyze the effect of fracture orientations on relative permeability curves as well as flow regimes. The phase flow rates versus phase saturation results were converted to experimental relative permeability curves. The results of the experiments demonstrate that, depending on fracture and flow orientation, there could be a significant interference between the phases flowing through the fracture. The results also reveal that both phases can flow in both continuous and discontinuous forms. The relative permeability curves show that the oil–water relative permeability not only depends on fluid saturations and flow patterns but also fracture orientation.  相似文献   

11.
A parametric two-phase, oil–water relative permeability/capillary pressure model for petroleum engineering and environmental applications is developed for porous media in which the smaller pores are strongly water-wet and the larger pores tend to be intermediate- or oil-wet. A saturation index, which can vary from 0 to 1, is used to distinguish those pores that are strongly water-wet from those that have intermediate- or oil-wet characteristics. The capillary pressure submodel is capable of describing main-drainage and hysteretic saturation-path saturations for positive and negative oil–water capillary pressures. At high oil–water capillary pressures, an asymptote is approached as the water saturation approaches the residual water saturation. At low oil–water capillary pressures (i.e. negative), another asymptote is approached as the oil saturation approaches the residual oil saturation. Hysteresis in capillary pressure relations, including water entrapment, is modeled. Relative permeabilities are predicted using parameters that describe main-drainage capillary pressure relations and accounting for how water and oil are distributed throughout the pore spaces of a porous medium with mixed wettability. The capillary pressure submodel is tested against published experimental data, and an example of how to use the relative permeability/capillary pressure model for a hypothetical saturation-path scenario involving several imbibition and drainage paths is given. Features of the model are also explained. Results suggest that the proposed model is capable of predicting relative permeability/capillary pressure characteristics of porous media mixed wettability.  相似文献   

12.
认识双重多孔介质中油水两相微观渗流机制是回答形成什么类型的裂隙网络可提高油藏采收率的关键. 微裂隙的分布可以提高多孔介质的绝对渗透率,但对于基质孔隙中的流体介质,微裂隙的存在会引起多孔介质中局部流体压力和流场的变化,导致局部流动以微裂隙流动为主,甚至出现窜流现象,降低驱油效率. 本文基于孔与裂隙双重网络模型,在网络进口设定两条平行等长且具有一定间隔的微裂隙,分析微裂隙的相对间隔(微裂隙之间距离/喉道长度)和微裂隙相对长度(微裂隙长度/喉道长度)对于微观渗流特征的影响. 结果表明:随微裂隙相对长度的增加,出现驱油效率逐渐降低,相对渗透率曲线中的油水共渗区水饱和度和等渗点增加,油水两相的共渗范围减小等现象;随着微裂隙之间相对间隔增大,周围越来越多的基质孔穴间的压力差减小,在毛管压力的限制下,驱替相绕过这些区域,而导致水窜现象.   相似文献   

13.
We benchmark a family of hybrid finite element–node-centered finite volume discretization methods (FEFV) for single- and two-phase flow/transport through porous media with discrete fracture representations. Special emphasis is placed on a new method we call DFEFVM in which the mesh is split along fracture–matrix interfaces so that discontinuities in concentration or saturation can evolve rather than being suppressed by nodal averaging of these variables. The main objective is to illustrate differences among three discretization schemes suitable for discrete fracture modeling: (a) FEFVM with volumetric finite elements for both fractures and porous rock matrix, (b) FEFVM with lower dimensional finite elements for fractures and volumetric finite elements for the matrix, and (c) DFEFVM with a mesh that is split along material discontinuities. Fracture discontinuities strongly influence single- and multi-phase fluid flow. Continuum methods, when used to model transport across such interfaces, smear out concentration/saturation. We show that the new DFEFVM addresses this problem producing significantly more accurate results. Sealed and open single fractures as well as a realistic fracture geometry are used to conduct tracer and water-flooding numerical experiments. The benchmarking results also reveal the limitations/mesh refinement requirements of FE node-centered FV hybrid methods. We show that the DFEFVM method produces more accurate results even for much coarser meshes.  相似文献   

14.

Three-phase flow in porous media is encountered in many applications including subsurface carbon dioxide storage, enhanced oil recovery, groundwater remediation and the design of microfluidic devices. However, the pore-scale physics that controls three-phase flow under capillary dominated conditions is still not fully understood. Recent advances in three-dimensional pore-scale imaging have provided new insights into three-phase flow. Based on these findings, this paper describes the key pore-scale processes that control flow and trapping in a three-phase system, namely wettability order, spreading and wetting layers, and double/multiple displacement events. We show that in a porous medium containing water, oil and gas, the behaviour is controlled by wettability, which can either be water-wet, weakly oil-wet or strongly oil-wet, and by gas–oil miscibility. We provide evidence that, for the same wettability state, the three-phase pore-scale events are different under near-miscible conditions—where the gas–oil interfacial tension is ≤?1 mN/m—compared to immiscible conditions. In a water-wet system, at immiscible conditions, water is the most-wetting phase residing in the corners of the pore space, gas is the most non-wetting phase occupying the centres, while oil is the intermediate-wet phase spreading in layers sandwiched between water and gas. This fluid configuration allows for double capillary trapping, which can result in more gas trapping than for two-phase flow. At near-miscible conditions, oil and gas appear to become neutrally wetting to each other, preventing oil from spreading in layers; instead, gas and oil compete to occupy the centre of the larger pores, while water remains connected in wetting layers in the corners. This allows for the rapid production of oil since it is no longer confined to movement in thin layers. In a weakly oil-wet system, at immiscible conditions, the wettability order is oil–water–gas, from most to least wetting, promoting capillary trapping of gas in the pore centres by oil and water during water-alternating-gas injection. This wettability order is altered under near-miscible conditions as gas becomes the intermediate-wet phase, spreading in layers between water in the centres and oil in the corners. This fluid configuration allows for a high oil recovery factor while restricting gas flow in the reservoir. Moreover, we show evidence of the predicted, but hitherto not reported, wettability order in strongly oil-wet systems at immiscible conditions, oil–gas–water, from most to least wetting. At these conditions, gas progresses through the pore space in disconnected clusters by double and multiple displacements; therefore, the injection of large amounts of water to disconnect the gas phase is unnecessary. We place the analysis in a practical context by discussing implications for carbon dioxide storage combined with enhanced oil recovery before suggesting topics for future work.

  相似文献   

15.
Water chemistry has been shown experimentally to affect the stability of water films and the sorption of organic oil components on mineral surfaces. When oil is displaced by water, water chemistry has been shown to impact oil recovery. At least two mechanisms could account for these effects, the water chemistry could change the charge on the rock surface and affect the rock wettability, and/or changes in the water chemistry could dissolve rock minerals and affect the rock wettability. The explanations need not be the same for oil displacement of water as for water imbibition and displacement of oil. This article investigates how water chemistry affects surface charge and rock dissolution in a pure calcium carbonate rock similar to the Stevns Klint chalk by constructing and applying a chemical model that couples bulk aqueous and surface chemistry and also addresses mineral precipitation and dissolution. We perform calculations for seawater and formation water for temperatures between 70 and 130°C. The model we construct accurately predicts the surface potential of calcite and the adsorption of sulfate ions from the pore water. The surface potential changes are not able to explain the observed changes in oil recovery caused by changes in pore water chemistry or temperature. On the other hand, chemical dissolution of calcite has the experimentally observed chemical and temperature dependence and could account for the experimental recovery systematics. Based on this preliminary analysis, we conclude that although surface potential may explain some aspects of the existing spontaneous imbibitions data set, mineral dissolution appears to be the controlling factor.  相似文献   

16.
致密油藏采用注水吞吐补充地层能量取得了一定效果. 但多轮次注水吞吐后, 地层压力和产量降低快. 本文考虑了致密油藏复杂的裂缝形态, 根据艾尔文理论及弹性力学剖析I型裂缝尖端附近的应力场分布, 基于渗流力学、裂缝性致密油藏特征及动态裂缝渗流规律, 建立了多裂缝交叉裂缝扩展渗流模型, 结合注水诱导裂缝扩展机理及断裂力学能量守恒原理, 得到裂缝扩展长度. 依据致密油藏逆向渗吸原理, 提出将注水吞吐转为不稳定脉冲注水. 对比分析注水吞吐、脉冲注水2种能量补充发方式, 预测10年累计采油、压力及剩余油分布. 结果表明, 裂缝净内压随着注水量的增加而升高, 当应力场强度因子达到断裂韧度, 在裂缝尖端会发生扩展. 扩展及延伸的天然裂缝相互沟通, 呈现不规则复杂缝网, 在复杂缝网中主要发生逆向渗吸作用. 脉冲注水累计产油高、注水波及面积广、逆向渗吸作用强. 裂缝性致密油藏水平井注水吞吐转变为脉冲注水方式, 能够充分发挥动态缝网的逆向渗吸及线性驱替作用, 实现有效驱油的目的.   相似文献   

17.
Microbial enhanced oil recovery (MEOR) represents a possible cost-effective tertiary oil recovery method. Although the idea of MEOR has been around for more than 75 years, even now little is known of the mechanisms involved. In this study, Draugen and Ekofisk enrichment cultures, along with Pseudomonas spp. were utilized to study the selected MEOR mechanisms. Substrates which could potentially stimulate the microorganisms were examined, and l-fructose, d-galacturonic acid, turnose, pyruvic acid and pyruvic acid methyl ester were found to be the best utilized by the Ekofisk fermentative enrichment culture. Modelling results indicated that a mechanism likely to be important for enhanced oil recovery is biofilm formation, as it required a lower in situ cell concentration compared with some of the other MEOR mechanisms. The bacterial cells themselves were found to play an important role in the formation of emulsions. Bulk coreflood and flow cell experiments were performed to examine MEOR mechanisms, and microbial growth was found to lead to possible alterations in wettability. This was observed as a change in wettability from oil wet (contact angle 154°) to water wet (0°) due to the formation of biofilms on the polycarbonate coupons.  相似文献   

18.
Carbonated water injection (CWI) is a CO2-augmented water injection strategy that leads to increased oil recovery with added advantage of safe storage of CO2 in oil reservoirs. In CWI, CO2 is used efficiently (compared to conventional CO2 injection) and hence it is particularly attractive for reservoirs with limited access to large quantities of CO2, e.g. offshore reservoirs or reservoirs far from large sources of CO2. We present the results of a series of CWI coreflood experiments using water-wet and mixed-wet Clashach sandstone cores and a reservoir core with light oil (n-decane), refined viscous oil and a stock-tank crude oil. The experiments were carried out to assess the performance of CWI and to quantify the level of additional oil recovery and CO2 storage under various experimental conditions. We show that the ultimate oil recovery by CWI is higher than the conventional water flooding in both secondary and tertiary recovery methods. Oil swelling as a result of CO2 diffusion into the oil and the subsequent oil viscosity reduction and coalescence of the isolated oil ganglia are amongst the main mechanisms of oil recovery by CWI that were observed through the visualisation experiments in high-pressure glass micromodels. There was also evidence of a change in the rock wettability that could also influence the oil recovery. The coreflood test results also reveal that the CWI performance is influenced by oil viscosity, core wettability and the brine salinity. Higher oil recovery was obtained with the mixed-wet core than the water-wet core, with light oil than with the viscous oil and low salinity carbonated brine than high-salinity carbonated brine. At the end of the flooding period, an encouraging amount of the injected CO2 was stored in the brine and the remaining oil in the form of stable dissolved CO2. The experimental results clearly demonstrate the potential of CWI for improving oil recovery as compared with the conventional water flooding (secondary recovery) or as a water-based EOR (enhanced oil recovery) method for watered out reservoirs.  相似文献   

19.
Traveling liquid bridges in unsaturated fractured porous media   总被引:1,自引:0,他引:1  
Interplay between capillary, gravity and viscous forces in unsaturated fractures gives rise to a range of complex flow phenomena. Evidence of highly intermittent fluxes, preferential and sustainable flow pathways lead to potentially significant flow focusing of concern for regulatory and management of water resources in fractured rock formations. In previous work[Ghezzehei TA,Or D.: Water Resour. Res. In Review(2005)] we developed mechanistic models for formation, growth and detachment of liquid bridges in geometrical irregularities within fractures. Such discrete and intermittent flows present a challenge to standard continuum theories. Our focus here is on predicting travel velocities of detached liquid elements and their interactions with fracture walls. The scaling relationships proposed by Podgorski et al. [Podgorski, T., et al.: Phys. Rev. Lett. 8703(3), 6102-NIL_95 (2001)] provide a general framework for processes affecting travel velocities of discrete liquid elements in fractures, tubes, and in coarse porous media. Comparison of travel velocity and distance by discrete bridges relative to equivalent continuous film flow reveal significantly faster and considerably larger distances traversed by liquid bridges relative to liquid films. Coalescence and interactions between liquid bridges result in complex patterns of travel times and distances. Mass loss on rough fracture surfaces shortens travel distances of an element; however, results show that such retardation provides new opportunities for coalescence of subsequent liquid elements traveling along the same path, resulting in mass accumulation and formation of larger liquid elements traveling larger distances relative to smooth fracture surfaces. Such flow focusing processes may be amplified considering a population of liquid bridges within a fracture plane and mass accumulation in fracture intersections.  相似文献   

20.
IntroductionItisasuccessfulexampleinadevelopmentstoryofscienceandtechnologyformechanicsoffluidsinporousmediatocombinewithengineeringtechnology .Fieldsinfluencedbythemechanicsinvolveddevelopmentofoil_gasandgroundwaterresources,controlonseawaterintrusionandsubsidenceandgeologichazards,geotechnicalengineeringandbioengineering ,andairlineindustry[1~ 7].Aproblemonnonlinearflowinlow_permeabilityporousmediaisbutonlyabasiconeindifferentkindsofengineeringfields,butalsooneoffrontlineresearchfieldsofmod…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号