首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Ethyl-cyanoethyl cellulose [(E-CE)C]/acrylic acid (AA) becomes a cholesteric liquid crystalline solution withvivid colors when the (E-CE)C concentration is 42 wt%~52 wt%. (E-CE)C/polyacrylic acid (PAA) composites withcholesteric structure were prepared by polymerzing AA in (E-CE)C/AA liquid crystalline solutions. The layers of orderedpolymer chains in the cholesteric phase were inclined during polymerization and the degree of the inclination depended onthe polymerization temperature and the concentration of the solution before polymerization. The cholesteric structure in thecomposites could not be changed when temperature was lower than 100℃. Cross-linking of the PAA in compositesimproved their water-resistance. The cholesteric order of the composites without cross-linking was destroyed when theywhere immersed in water. The color derived from the selective reflection of the cholesteric phase of the cross-linkedcomposites turned from blue to red after the composites absorbed water. The color of the composites could be returned to theoriginal one when the absorbed water was removed from the swollen composites.  相似文献   

2.
The ultrafine particles of a new style Fe-Cu-based catalysts for CO hydrogenation were prepared by impregnating the organic sol of Fe(OH)3 and Cu(OH)2 onto the activated Al2O3, in which the organic sol of Fe(OH)3 and Cu(OH)2 were prepared in the microemulsion of dodecylbenzenesulfonic acid sodium(S)/n-butanol(A)/toluene(O)/water with V(A)/V(O) = 0.25 and W(A)/W(S) = 1.50. This catalyst was characterized by particle size analysis, XRD and TG. The results of particle size analysis showed that Fe(OH)3 particles with a mean size of 17.1 nm and Cu(OH)2 particles with an average size of 6.65 um were obtained. TG analysis and XRD patterns suggested that 673 K is the optimal calcination temperature. CO hydrogenation produced C+OH with a high selectivity above 58 wt% by using the ultrafine particles as catalyst, and the total alcohol yield of 0.250 g·ml^-1 ·h^-1 was obtained when the contents of Al2O3 and K were 88.61 wt% and 1.60 wt%, respectively.  相似文献   

3.
Polycrystallines Bi0.5Ca0.5–xLaxFe0.3Mn0.7O3(x=0, 0.05, 0.10, 0.15, 0.20, 0.25) were prepared by molten salt method and showed perovskite orthorhombic structure with space group Pnma. The magnetic measurements indicate that the compounds exhibit antiferromagnetic behavior in a temperature range of 4―300 K. The measurements of transport properties suggest that the substitution of La for Ca enhanced the conductivity, and a kink appeared on the curve of temperature dependence of resistivity at 275 K, which is ...  相似文献   

4.
A series of supported molybdenum phosphide catalysts were prepared by impregnation method. XRD, TG-DTG, XPS and BET were used to study the phase, compositions and surface areas of the prepared catalysts. A model reactant containing thiophene, pyridine and cyclohexene was used for the measurements of catalytic activities. The effect of reduction temperature on catalytic activities was investigated. The analysis results by XRD and BET are very different when the reduction temperature is changed from 400 to 900 ℃. MoP/γ-Al2O3 catalysts and CoMoP/γ-Al2O3 catalysts prepared at the reduction temperature of 500 ℃ are the most active ones.  相似文献   

5.
The reaction of HCN with O(^1D, ^3p) radical has been investigated by density functional theory (DFT) and ab initio methods. The stationary points on the reaction paths (reactants, intermediates and products) were optimized at the (U)B3LYP/aug-cc-pVTZ level. Single-point calculations were performed at the (U)QCISD(T)/aug-cc-pVTZ level for the optimized structures and all the total energies were corrected by zero-point energy. It is shown that there exist three competing mechanisms of oxygen attacking nitrogen O→N, oxygen attacking carbon O→C and oxygen attacking hydrogen O→H. The rate constants were obtained via Eyring transition-state theory in the temperature range of 600~2000 K. The linear relationship between lnk and 1/T was presented. The results show that path 1 is the main reaction channel and the product of NCO + H is predominant.  相似文献   

6.
Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in the temperature range of 295?322 K. The peak temperature, the enthalpy, and entropy of the phase transition were determined to be (316.269±1.039) K, (11.194±0.335) kJ?mol-1, and (35.391±0.654) J?K-1?mol-1, respectively. The experimental values of the molar heat capacities in the temperature regions of 78?295 K and 322?374 K were fitted to two polynomial equations of heat capacities(Cp,m) with reduced temperatures(X) and [X = f(T)], with the help of the least squares method, respectively. The smoothed molar heat capacities and thermodynamic functions of the compound, relative to that of the standard reference temperature 293.15 K, were calculated on the basis of the fitted polynomials and tabulated with an interval of 5 K. In addition, the possible mechanism of thermal decomposition of the compound was inferred by the result of TG-DTG analysis.  相似文献   

7.
汪映寒 《高分子科学》2014,32(12):1610-1619
Polyimides(PI) with different side chains in structure were synthesized by copolycondensation of pyromelliticmdianhydride(PMDA) with 3,5-diamino-(4'-methane acid hexyl ester) phenyl-benzamide(C6-PDA),(4-butoxybiphenol)-3', 5'-diaminobenzoate(C4-BBDA) and 3, 5-diamino-benzoic acid decyl ester(C10-DA) named PI-PDA, PI-C4, PI-DA, respectively. The lengths of side chains of PI-PDA and PI-DA are as similar as that of PI-C4. Through the pretilt angle tests it is demonstrated that neither the structure of side chains nor the rubbing process could make an obvious difference on vertical alignment property when the lengths of the side chains are similar, standing at around 1.6 nm. The measurement of surface energy of PI surfaces further proved this result. The result of the X-ray photo-electron spectroscope measurement indicated that the side chains of PIs stretched out from the polymer bulk phase and accumulated on the surface.  相似文献   

8.
Conductive polyvinylidene fluoride(PVDF)matrix composites filled with graphited fiber(GF)or carbon fiber(CF)were prepared by the melt-mixing method.The breakage and length distribution of the fibers in the polymer matrix were studied by scanning electron microscope(SEM)and optical microscope(OM)observations,respectively. The differences in the positive temperature coefficient(PTC)effects of the composites were mainly attributed to inter-fiber contact ability.The elimination of the negative temperature coefficient(NTC)effect for CF/PVDF composite was because of an increase in the viscosity of the polymer matrix.With the same filler content,CF could be more effective,to eliminate the NTC effect when compared with GF.Addition of 2%CF(mass fraction)in the PVDF composite with 7%GF(mass fraction)could effectively eliminate the NTC phenomenon of the composite.  相似文献   

9.
The molar heat capacity of the azeotropic mixture composed of water and benzene was measured by an adiabatic calorimeter in the temperature range from 80 to 320 K. The phase transitions took place in the temperature range from 265.409 to 275.165 K and 275.165 to 279.399 K. The phase transition temperatures were determined to be 272.945 and 278.339 K, which were corresponding to the solid-liquid phase transitions of water and benzene, respectively. The thermodynamic functions and the excess thermodynamic functions of the mixture relative to standard temperature 298.15 K were derived from the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.  相似文献   

10.
Lü Ling-Ling 《结构化学》2008,27(9):1039-1044
The insertion reaction mechanism of CF2 with CH2O was investigated at the B3LYP/6-311G(d)//MP2/6-311G(d) level. The geometric conformations at each stationary point in reaction potential surface were fully optimized and the transition states were verified by intrinsic reaction coordinate (IRC) and frequency analysis. The energies of all reactants were calculated with CCSD(T)/6-311G(d)//G2MP2 methods. Results indicated that the P1 reaction route with difuoroaldehyde as product is the dominant reaction pathway, which exhibits nucleophilic character. According to NBO analysis, the starting point of insertion reaction is the interaction between carbene LP(C3) and formaldehyde π(Cl-O2). Besides, the thermodynamic and dynamic properties of dominated reaction (1) at different temperature were studied with statistic thermodynamic method and Eyring transition state theory adjusted by Wigner means, from which the proper temperature (500- 1200 K) of reaction (1) could be estimated. Finally, the thermo- dynamic and dynamic properties of insertion reaction mechanisms (CF2, CX2 (X = Cl, Br) with CH2O) were compared and discussed.  相似文献   

11.
Poly(propylene carbonate) (PPC) showed predominantly degradation under electron-beam irradiation, accompanied by deterioration of its mechanical performance due to sharp decrease of the molecular weight. Crosslinked PPC was prepared by addition of polyfunctional monomer (PFM) to enhance the mechanical performance of PPC. When 8 wt% of PFM like triallyl isocyanurate (TAIC) was added, crosslinked PPC with a gel fraction of 60.7% was prepared at 50 kGy irradiation dose, which showed a tensile strength at 20 °C of 45.5 MPa, whereas it was only 38.5 MPa for pure PPC. The onset degradation temperature (Ti) and glass transition temperature (Tg) of this crosslinked PPC was 246 °C and 45 °C, respectively, a significant increase related to pure PPC of 211 °C and 36 °C. Therefore, thermal and mechanical performances of PPC could be improved via electron-beam irradiation in the presence of suitable PFM.  相似文献   

12.
Modified graphite oxide (MGO)/Poly (propylene carbonate) (PPC) composites with excellent thermal and mechanical properties have been prepared via a facile solution intercalation method. An intercalated structure of MGO/PPC composites was confirmed by X-ray diffraction and scanning electron microscope. The thermal and mechanical properties of MGO/PPC composites were investigated by thermal gravimetric analysis, differential scanning calorimetric, dynamic mechanical analysis, and electronic tensile tester. Due to the nanometer-sized dispersion of layered graphite in PPC matrix and the strong interfacial interaction between MGO and PPC, the prepared MGO/PPC composites exhibit improved thermal and mechanical properties in comparison with pure PPC. Compared with pure PPC, the MGO/PPC composites show the highest thermal stability and the Tg is 13.8 °C higher than that of pure PPC, while the tensile strength (29.51 MPa) shows about 2 times higher than that of pure PPC when only 3.0 wt.% MGO is incorporated. These results indicate that this approach is an efficient method to improve the properties of PPC.  相似文献   

13.
The preparation of polyimide (PI) resin with high heat resistance and toughness is a significant challenge. In this study, thermoplastic PI (TPI) was used to toughen thermosetting PIs, and toughened PI (TPI/PI) blends were prepared. The modified PI resin system exhibited good thermal stability, excellent heat resistance, and high toughness. The results indicated that the TPI/PI blends maintained the curing behavior and characteristics of the PI oligomer. The Tg of the cured TPI/PI blend exceeded 395 °C, and the T5% values were in the range of 533–563 °C, suggesting excellent thermal stability and heat resistance. The maximum impact strength was increased by 46% compared with that of pure PI, indicating the excellent toughening effect of the TPI. Carbon fiber-reinforced PI composites were prepared using the toughening system as a matrix. The compression-after-impact values of the carbon fiber-reinforced PI composites were up to 190 MPa, indicating the excellent toughness of the materials.  相似文献   

14.
In the study, the conductive graphite flakes filled poly(urethane-imide) composites (PUI/GFs) with high performance were constructed by the thermal imidization self-foaming reaction. It was found that the foaming action could promote the redistribution of GFs during curing process and the formation of stable linear conductive pathways. The percolation threshold of PUI/GFs composites was lowered from 1.26 wt% (2000 mesh GFs) or 0.86 wt% (1000 mesh GFs) to 0.79 wt% (500 mesh GFs), which were relatively low percolation thresholds for polymer/GFs composites so far. When the content of 500 mesh GFs was 4.0 wt%, the electrical conductivity of the composite was as high as 3.96 × 10?1 S/m. Also, a poly(urethane-imide) (PUI) matrix with excellent thermal stability (Td10%: 334.97 °C) and mechanical properties (elongation at break: 324.52%, tensile strength: 15.88 MPa) was obtained by introducing the rigid aromatic heterocycle into the polyurethane (PU) hard segments. Moreover, the zero temperature coefficient of resistivity for the composites was observed at the temperature range from 30 °C to 200 °C. Consequently, PUI/GFs composites may provide the novel strategy for considerable conductive materials with high thermal stability in electrical conductivity.  相似文献   

15.
Melt blending with the application of epoxy compound ADR-4368 as a chain extender was used to chemically modify polypropylene carbonate (PPC). 1H nuclear magnetic resonance spectroscopy (1H NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and tests using a universal material testing machine, a gas permeability tester, a water vapor permeability tester and other instruments were used to assess changes in the chemical structure, thermal and mechanical properties, and barrier efficacy of PPC before and after modification.The epoxy group in ADR-4368 reacted with the terminal hydroxyl group in PPC, considerably enhancing its mechanical properties, thermal stability and barrier efficacy to O2 and CO2. With the addition of 1% ADR-4368, the glass transition temperature of PPC was increased from 17 °C to 26.9 °C, while the thermal decomposition temperature (T5%) of PPC was increased from 177.3 °C to 240.6 °C. Moreover, the tensile strength of the modified PPC was improved from 3.3 MPa to 20.7 MPa.  相似文献   

16.
Molecular composites were prepared from several types of ionically modified, poly(p‐phenylene terephthalamide) (PPTA) dispersed in a poly(4‐vinylpyridine) matrix. Optical clarity tests indicated that the component polymers of the composite were miscible, at least at low concentrations of the rodlike reinforcement. In composites containing ionic PPTA, where ionic sulfonate groups were attached as side groups either to PPTA chains or to PPTA anion chains, the glass‐transition temperature (Tg) was increased by l0 °C or more, at 5 wt % reinforcement. At concentrations of 10–15 wt % of the ionic polymer, Tg values leveled off or decreased slightly. This suggested that some aggregation of the rigid‐rod molecules occurred. In composites containing ionic PPTA, where the ionic sulfonate groups were directly attached to the phenylene rings of PPTA chains, not only was Tg shifted significantly to higher temperatures, but the rubbery plateau modulus retained high values up to temperatures of 250 °C or above. Observed effects were considered to be the result of strong ionic interactions between the ionic reinforcement polymer and the polar matrix polymer. The possible effects of the counterion on Tg and the storage modulus are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1110–1117, 2002  相似文献   

17.
In this study, novel poly(imide-ethylene glycol) (PIEG) was prepared via polycondensation of ethylenediaminetetraacetic dianhydride, 4-aminophenyl sulfone, and poly(ethylene glycol) bis(amine). Later, thermally stable and mechanically robust undoped and acid-doped proton exchange membranes were prepared using the graphene oxide (GO) nanofiller. Field emission scanning electron microscope revealed a unique hexagonal imprinted morphology of the fractured surface. Increasing the GO content from 1 to 5 wt% increased tensile strength (59.7–65.9 MPa) and the modulus (20.3–23.9 GPa) of the undoped PIEG/GO series. Thermal properties of the undoped PIEG/GO 1–5 membranes were also higher, i.e., T10 = 438–487°C. However, dop-PIEG/GO 1–5 membranes have a higher ion exchange capacity (IEC) of 2.4–2.9 mmol/g and proton conductivity 1.8–2.7 S cm?1 (94% RH).  相似文献   

18.
Poly(propylene carbonate) (PPC) is a new biodegradable aliphatic polycarbonate. However, the poor thermal stability and low glass transition temperatures (Tg) have limited its applications. To improve the thermal properties of PPC, organophilic montmorillonite (OMMT) was mixed with PPC by a solution intercalation method to produce nanocomposites. An intercalated-and-flocculated structure of PPC/OMMT nanocomposites was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal and mechanical properties of PPC/OMMT nanocomposites were investigated by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), and electronic tensile tester. Due to the nanometer-sized dispersion of layered silicate in polymer matrix, PPC/OMMT nanocomposites exhibit improved thermal and mechanical properties than pure PPC. When the OMMT content is 4 wt%, the PPC/OMMT nanocomposite shows the best thermal and mechanical properties. These results indicate that nanocomposition is an efficient and convenient method to improve the properties of PPC.  相似文献   

19.
Partially exfoliated nanocomposite(2) has been synthesized by intercalation of poly(propylene carbonate)(PPC) into commercial clay,Cloisite 20B(PPC/C-20B).Nanocomposite 2 was characterized phiso-chemically and exhibited high thermal,mechanical and anti-water sorption properties as compared to PPC and intercalated nanocomposite(1) of PPC/C-20B having same amount of clay.TGA results revealed that the thermal decomposition temperature(Td,50%) of 2 increased significantly,being 40 K and 17 K higher than that of pure PPC and 1,respectively,while DSC measurements indicated that the nano-filler dispersion of 2 increased the glass transition temperature from 21℃to 31℃.Accordingly,2 showed high elastic modulus,hardness and anti-water absorption capacity.These thermal,mechanical and anti-water absorption improvements are of great importance for the application of PPC as packaging and biomaterials.  相似文献   

20.
In the present study, layered double hydroxide (LDH) nanoplates with high crystallinity and uniform size were facilely synthesized to act as reinforcing agents in polymer materials. The structure of the synthesized LDH nanoplates was characterized by X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurements. Subsequently, the LDH nanoplates were incorporated into poly(vinyl alcohol) (PVA) matrix as reinforcing agents based on a solution casting method. The LDH nanoplates were well dispersed in PVA matrix and formed strong interfacial interactions with PVA chains, leading to remarkable improvements of thermal stability, flame retardancy, and mechanical properties. With the incorporation of 1 wt% LDH nanoplates into PVA, the Tonset and T50% increased by 11°C and 57°C, respectively. Moreover, the presence of LDH nanoplates decreases the decomposition rates of PVA and increases the amount of char residues. Compared with pure PVA, the peak heat release rate value of the PVA/5 wt% LDH nanocomposites is decreased by 52%. The tensile strength and the elongation at break increased by 71% and 187%, respectively, when incorporating with 3 wt% LDH nanoplates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号