首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ultraviolet-B (UV-B; 280-320 nm)-emitting lamps unavoidably emit ultraviolet-A (UV-A; 320-400 nm) and ultraviolet-C (UV-C; <280 nm) radiation. Short-wavelength-blocking filters are generally used to limit the wave bands of UV under investigation. The widespread use of such filters means that all exposures to UV-B radiation will have a significant UV-A component. Therefore, the physiological effects unique to UV-B exposure are difficult to clearly isolate. This study presents a method to remove the UV-A and UV-C "contamination" using a liquid potassium chromate (K(2)CrO(4)) filter, thus allowing more direct assessment of the effects of UV-B exposure. Cultures of the green marine alga Dunaliella tertiolecta were grown in the absence of UV radiation. Sunlamps supplied the UV radiation for a 24 h exposure (solar radiation was not used in this study). The UV radiation was filtered either by the standard method (i.e. cellulose acetate (CA) with polyester = Mylar controls) or by a liquid filter of potassium chromate. Photosynthetic responses were compared. Major decreases in the ratio of variable to maximal fluorescence in dark-adapted cells and photosynthetic capacity were observed in CA-filtered cultures, whereas no change was observed in cells exposed to the same UV-B flux with the UV-A removed by K(2)CrO(4). The use of a CA filter with a Mylar control does not link results unequivocally to UV-B radiation. Such results should be interpreted with caution.  相似文献   

2.
Abstract— The increase in UV-B radiation(290–320 nm) penetrating to the earth's surface as a result of the chemical depletion of the stratospheric ozone layer is an important environmental concern. In most studies using artificial UV-B sources, the determination of enhanced UV-B radiation effects on plants relies on equivalent UV-A radiation(320–400 nm) from the experimental UV-B fluorescent lamp source, filtered with either cellulose diacetate (CA) to create UV-B treatments, or with type S Mylar or polyester (PE) to create controls (no UV-B). The spectral irradiance in the UV-A was measured in the dark below lamps at two daily UV-B irradiance levels (14.1 and 10.7 W m-2) with CA and PE at two ages. Highly significant differences in UV-A radiation (P 0.01) were measured below the treatment/control pairs at both fluence rates and filter ages. Filter aging was observed, which reduced the UV-A irradiance, especially for PE. The total daily ambient UV-A irradiance was also determined in the glasshouse at three seasons: the fall equinox, summer and winter, from which the total daily UV-A (lamp + ambient) irradiances were calculated. The addition of low to moderate ambient irradiance removed the treatment/control differences in the longwave UV-A(350–400 nm); however, the treatment/contro1 differences remained in the shortwave UV-A(320–350 nm), which was restricted by the glass, and in the total UV-A. The treatment/control differences persisted in the shortwave UV-A for the higher irradiance level, even under high summer ambient light. Also, spectral ratios (UVB:UV-A and shortwave: longwave UV-A) for all treatment groups decreased as the ambient UV-A radiation increased. Therefore, a range of experimental conditions exist where PE-covered lamps do not provide adequate control for UV-A irradiance, relative to the CA treatment, for glasshouse/growth chamber experiments. Potential complications in the interpretation of plant response exist for UV-B experiments conducted under low ambient light conditions (e.g. growth chambers; glasshouse in winter) or high daily UV-B irradiances (e.g. 14 kJ m-2) for those plant responses that are sensitive to UV-A radiation.  相似文献   

3.
Laboratory tests confirmed a negative and variable response of the following four species to artificial UV radiation: Cypridopsis vidua, an ostracode; Chironomus riparius, a midge larvae; Hyalella azteca, an amphipod; and Daphnia magna, a daphnid. Severe damage occurred at UV-B irradiance ranging from 50 to 80% of incident summer values. Under constant exposure to UV and photosynthetically active radiation (PAR) the acute lethal response was recorded at 0.3, 0.8, 0.8 and 4.9 W m-2 UV-B for D. magna, H. azteca, C. riparius and C. vidua, respectively. Sublethal UV-B damage to invertebrates included impaired movement, partial paralysis, changes in pigmentation and altered water balance (bloating). A series of UV-B, UV-A and PAR treatments, applied separately and in combination, revealed a positive role for both UV-A and PAR in slowing down UV-B damage. Mean lethal concentration values of the species typically more tolerant to UV and PAR (Cypridopsis, Chironomus) decreased conspicuously when both UV-A and PAR were eliminated. For UV-B-sensitive species (Hyalella, Daphnia) these differences were notably smaller. We suggest that this gradation of sensitivity among the tested species demonstrates potential differences in repairing mechanisms which seem to work more efficiently for ostracodes and chironomids than for amphipods and daphnids. Manipulations with a cellulose acetate filter showed that lower range UV-B (280-290 nm), produced by FS-40 lamps, may cause excessive UV damage to invertebrates.  相似文献   

4.
Plants of perennial ryegrass (Lolium perenne L.), red fescue (Festuca rubra L.), tall fescue (F. arundinacea Schreb.) and meadow fescue (F. pratensis Huds) were exposed at an outdoor facility located in Edinburgh, UK to modulated levels of UV-B radiation (280-315 nm) using banks of cellulose diacetate filtered UV-B fluorescent lamps that also produce UV-A radiation (315-400 nm). The plants were derived from a single clone of each species and were grown both with and without colonization by naturally-occurring fungal endophytes. The UV-B treatment was a 30% elevation above the ambient erythemally-weighted level of UV-B during July to October. Growth of treated plants was compared with plants grown under elevated UV-A radiation alone produced by banks of polyester filtered lamps and with plants grown at ambient levels of solar radiation under banks of unenergized lamps. At the end of the treatment period, sample leaves were collected for feeding trials with the desert locust Schistocerca gregaria (Forsk). The UV-B treatment produced no effects on the aboveground biomass of any of the four grasses. The UV-B treatment and the UV-A control exposure both increased plant height and the number of daughter plants formed by rhizome growth in F. rubra. There were significant effects of endophyte presence on the total fresh and dry weights of F. arundinacea and F. rubra, on fresh weight only in F. pratensis, and on the fresh and dry weights of inflorescence in F. arundinacea and L. perenne. There were no effects of UV treatments on the absolute amounts of leaf consumed or on the feeding preferences of locusts for leaves with or without endophyte in three species: F. rubra, F. arundinacea and L. perenne. In F. pratensis there was no effect of UV treatment on the weight of leaves consumed but a significant UV x endophyte interaction caused by a marked change in feeding preference between leaves with and without endophyte that differed between the UV-B treatment and UV-A control exposures. The alkaloid compounds known as lolines were analysed in leaves of F. pratensis and were only found in plants grown with endophyte. However, there was no significant relationship between total loline content and insect feeding preference. These effects illustrate the potential complexities of species interactions under increasing levels of UV-B. The experiment also demonstrates the importance of appropriate controls in UV lamp supplementation experiments for interpretation of both plant growth and insect feeding effects.  相似文献   

5.
SPECTRAL QUALITY OF TWO FLUORESCENT UV SOURCES DURING LONG-TERM USE   总被引:1,自引:0,他引:1  
The characteristics of a fluorescent ultraviolet (UV) lamp (UVB-313), UV-B transmitting cellulose diacetate (CA) and UV-B absorbing polyester (PE) films were determined during actual use. Although lamp emission was stable between 70 and 386 h of burn time (longer times were not investigated), the absorbance of UV-B and UV-A radiation by CA and PE films, respectively, increased with time when wrapped around lamps. As a result, the irradiance of lamp/filter combinations decreased steadily (even when CA films were presolarized for 10 h), making it necessary to compensate by adjusting the height of the lamp bank or by changing filters frequently. Note that corrective action is required for UV-A controls (PE films) as well as UV-B experimental treatments (CA films). Changing filters is preferable, since aging of CA filters caused shifts in the ratio of UV-B to UV-A. However, in spite of these shifts, the normalized spectrum of weighted biologically effective UV-B radiation did not change to a large extent.  相似文献   

6.
The correlation between the biologically effective dose (BED) of a phage T7 biological dosimeter and the induction of cyclobutane pyrimidine dimers (CPD) and (6-4) photoproducts ((6-4)PD) in the phage DNA was determined using seven various UV sources. The BED is the inactivation rate of phage T7 expressed in HT7 units. The CPD and (6-4)PD were determined by lesion-specific monoclonal antibodies in an immunodot-blot assay. The various lamps induced these lesions at different rates; the relative induction ratios of CPD to (6-4)PD increased with increasing effective wavelength of irradiation source. The amount of total adducts per phage was compared to the BED of phage T7 dosimeter, representing the average number of UV lesions in phage. For UVC (200–280nm radiation) and unfiltered TL01 the number of total adducts approximates the reading; however, UV sources having longer effective wavelengths produced fewer CPD and (6-4)PD. A possible explanation is that although the most relevant lesions by UVC are the CPD and (6-4)PD, at longer wavelengths other photoproducts can contribute to the lethal damage of phages. The results emphasize the need to study the biological effects of solar radiation because the lesions responsible for the lethal effect may be different from those produced by various UV sources.  相似文献   

7.
The role of photosynthetically active radiation (400-700 nm) (PAR) in modifying plant sensitivity and photomorphogenic responses to ultraviolet-B (280-320 nm) (UV-B) radiation has been examined by a number of investigators, but few studies have been conducted on ultraviolet-A (320-400 nm) (UV-A), UV-B and PAR interactions. High ratios of PAR-UV-B and UV-A-UV-B have been found to be important in ameliorating UV-B damage in both terrestrial and aquatic plants. Growth chamber and greenhouse studies conducted at low PAR, low UV-A and high UV-B often show exaggerated UV-B damage. Spectral balance of PAR, UV-A and UV-B has also been shown to be important in determining plant sensitivity in field studies. In general, one observes a reduction in total biomass and plant height with decreasing PAR and increasing UV-B. The protective effects of high PAR against elevated UV-B may also be indirect, by increasing leaf thickness and the concentration of flavonoids and other phenolic compounds known to be important in UV screening. The quality of PAR is also important, with blue light, together with UV-A radiation, playing a key role in photorepair of DNA lesions. Further studies are needed to determine the interactions of UV-A, UV-B and PAR.  相似文献   

8.
Abstract Although broadband UV-B irradiation has been shown to induce selective immunosuppression in a variety of experimental systems, the wavelength dependence of the immunomodulation and the initial events in the skin remain unclear. In the present study three UV lamps were used at suberythermal doses on C3H mice: a conventional broadband UV-B source (270–350 nm), a narrowband UV-B source (311–312 nm) and a UV-A source (320400 nm). Their effects on the photoisomerization of the naturally occumng trans- isomer of urocanic acid (UCA) to cis- UCA, on the density of Langerhans cells and on the ability of epidermal cells to stimulate allogeneic lymphocytes in the mixed skin lymphocyte reaction (MSLR) were ascertained. Broadband UV-B irradiation was more efficient than narrowband UV-B at reducing the density and function of Langerhans cells, while UV-A irradiation was least effective. These changes were most pronounced immediately following irradiation, were dose dependent and were only detected in UV-exposed areas of skin. There was a close correlation between the UV-induced reduction in Langerhans cell density and the formation of cis -UCA in the epidermis. This correlation was not detected between the reduction in the MSLR response following UV irradiation in vivo and cis-UCA formation.  相似文献   

9.
10.
This study examines the effects of natural solar radiation on the metal-binding capacity of dissolved organic matter (DOM). Newington Bog water (35.5 mg L−1 dissolved organic carbon [DOC]) was irradiated for 20 days under UV-B lamps in the laboratory and under natural solar radiation. In the presence of irradiated DOM, IC50 (contaminant concentration required to reduce algal growth by 50%) was significantly decreased with UV-B treatment for four metals: Pb, 64%; Cu, 63%; Ni, 35% and Cd, 40%. Solar radiation also significantly decreased IC50 of Pb (58%) and Cu (49%), DOC concentration (11%), DOM fluorescence (DOMFL, 33%) and DOC-specific UV absorbance. Further experiments on Raisin River water (20.7 mg DOC L−1) exposed to 20 days of artificial UVA and UV-B radiation produced significant decreases in IC50 for Cu (48%) with UV-A and for Pb (43%) with UV-B. DOC concentration was decreased 20% by UV-B and 24% by UV-A. DOMFL decreased 51.5% in the first 5 days of UV-A exposure, an effect that was not observed with the UV-B treatment. The UV-A treatment decreased UV absorbance more at longer wavelengths and over a broader wavelength band than did the UV-B treatment. Change in toxicity with UV irradiation was inconsistent among the metals tested in this study, indicating that some organic metal-binding ligands were more quickly removed or altered than others. The DOM remaining after irradiation appears to be qualitatively different from the unirradiated DOM. The much greater irradiance of UV-A makes its contribution to the removal and/or alteration of DOM at least as important as the influence of higher energy UV-B.  相似文献   

11.
Abstract— The Living Skin Equivalent (LSE™) is an organotypic coculture composed of human dermal fibroblasts interspersed in a collagen-containing matrix and overlaid with human keratinocytes forming a stratified epidermis. The LSE has a dry, air-exposed epidermal surface suitable for the application of oils, creams and emulsions. These features suggested its feasibility as an in vitro skin model for studying the protective effects of sunscreens. Using the thiazolyl blue (MTT) conversion assay as a measure of mitochondrial function, the extent of cytotoxicity induced by various doses of UV-R (280–400 nm) or UV-A (320–400 nm) was evaluated in the LSE. The doses of UV radiation that caused 50% reductions in MTT conversion (UV-R50 or UV-A50) in different lots of LSE were 0.053 ± 0.021 J/cm2 (n = 29) and 11.6 ± 4.9 J/cm2 (n = 17) for UV-R and UV-A, respectively. The protective effects of an 8% homosylate standard and of five UV-A sunscreens, topically applied to the LSE, were determined and compared with their reported protection factors in human skin. Morphological changes and the release of proinflammatory mediators (interleukin-1-α, tumor necrosis factor-α and prostaglandin E2) implicated in UV-induced erythema were also demonstrated in the LSE exposed to UV-A or UV-B. The data suggest that the LSE can be used for studying the effects of U V radiation on skin and may have utility for assessing the efficacy of certain sunscreens against UV-B and UV-A.  相似文献   

12.
This article is a highlight of the paper by Li et al. in this issue of Photochemistry and Photobiology as well as a short summary of the research on the effects of solar UV-B radiation on primary production in the oceans. Laboratory experiments under controlled conditions using artificial light sources indicate species-specific damage of many phytoplankton groups. Mesocosm studies in enclosures of limited volume allow analyzing UV effects in multigeneration monitoring of natural assemblages. Field studies to determine the effects of short-wavelength solar radiation require sensitive instrumentation and measurements over extended areas of the open ocean to yield significant results. Results from a cruise described in the paper by Li et al. indicate clear effects of UV-B and UV-A on the photosynthetic carbon fixation of phytoplankton communities with spatial differences between coastal and open-ocean waters. Increasing temperatures and acidification in the ocean due to global climate change may exacerbate the detrimental effects of solar UV-B radiation.  相似文献   

13.
Abstract— Comparison of spectroradiometric and meter measurements of a series of ultraviolet radiation sources indicates that a wide divergence between readings can occur. We found that with a xenon are filtered as a solar simulator producing UV-A (320–400 nm) and UV-B (290–320 nm) radiation, the meter can either over-or underestimate the emission of the source when different cutoff filters are used. The most severe discrepancy appears with the UV-B meter reading, although the UV-A reading can also be problematic. Meters should be calibrated against the specific sources they will be used to measure.  相似文献   

14.
Albino hairless mice (Skh: HR-1) exposed chronically to sub-erythemal doses of UV radiation display physical, visible and histological alterations. Using narrow bandwidth radiation covering the UV radiation spectrum from 280-380 nm, the wavelength dependence of these alterations was determined. The wavelength dependence spectra indicate that for all but one parameter measured (skin sagging), UV-B radiation is considerably more efficient than UV-A radiation in producing changes in the skin. However, in natural sunlight there is considerably more UV-A than UV-B radiation, providing the potential for UV-A to have a larger contribution to skin damage than UV-B. This argues in favor of using broad spectrum photoprotective agents to shield the skin adequately from UV-induced aging. The spectra were also used to develop potential associations among events by determining which events occur at similar wavelengths. There seems to be a correspondence between mouse visible skin wrinking (UV-B event) and two histological events: increase in glycosaminoglycans and alteration in collagen. There was no obvious correspondence among UV-A-induced events.  相似文献   

15.
The effects of ultraviolet radiation (UV-A: 320-400 nm and UV-B: 280-320 nm) and methyl viologen (MV) single or combined exposure, on the cell growth, viability and morphology of two strains of the unicellular flagellate Euglena gracilis, using the Z strain as a plant model and the achlorophyllous mutant SMZ strain as an animal model were investigated. Cell growth was not affected by MV only, whereas UV-A or UV-B single and combined exposure with MV inhibited the cell growth or decreased the viability. The SMZ strain had a higher number of abnormal cells than the Z strain after the third dose of UV-B was delivered simultaneously with MV. The abnormal cell number decreased when E. gracilis SMZ cells were preincubated with 100 microM rutin prior to the UV-B and MV exposure. There were higher abnormal cell numbers with groups exposed to UV rather than MV single exposure. Combined exposure to UV-B and 200 microM MV induced the highest levels of TBARS in both strains, and with the supplementation of rutin these high levels were suppressed. These results suggest that UV-A or UV-B irradiation alone or combined with MV cause considerable oxidative damage in E. gracilis cells, and rutin supplementation may suppress their adverse effects.  相似文献   

16.
Penetration of ultraviolet radiation in the marine environment. A review   总被引:1,自引:0,他引:1  
UV radiation (UVR) is a significant ecological factor in the marine environment that can have important effects on planktonic organisms and dissolved organic matter (DOM). The penetration of UVR into the water column is likely to change in the near future due to interactions between global warming and ozone depletion. In this study we report underwater instruments employed for the measurement of UVR and we review data dealing with the depth of UVR penetration in different oceanic areas including the open ocean, Antarctic waters and coastal waters. We provide the 10% irradiance depth (Z10%) for UV-A and UV-B as well as for DNA damage effective dose (DNA), which we calculated from the values of diffuse attenuation coefficients or vertical profiles reported in the literature. We observe a clear distinction between open ocean (high Z10%, no variation in the ratio UV-B/UV-A), Antarctic waters (increase in the ratio UV-B/UV-A during ozone hole conditions) and coastal waters (low Z10%, no variation in the ratio UV-B/UV-A). These variations in the penetration of UVR could lead to differences in the relative importance of photobiological/photochemical processes. We also compare in this study the penetration of UV-B (unweighted and weighted by the Setlow action spectrum) and DNA damage effective dose.  相似文献   

17.
In previous work, we evaluated the effects of ultraviolet (UV = 280-400 nm) radiation on the early life stages of a planktonic Calanoid copepod (Calanus finmarchicus Gunnerus) and of Atlantic cod (Gadus morhua). Both are key species in North Atlantic food webs. To further describe the potential impacts of UV exposure on the early life stages of these two species, we measured the wavelength-specific DNA damage (cyclobutane pyrimidine dimer [CPD] formation per megabase of DNA) induced under controlled experimental exposure to UV radiation. UV-induced DNA damage in C. finmarchicus and cod eggs was highest in the UV-B exposure treatments. Under the same spectral exposures, CPD loads in C. finmarchicus eggs were higher than those in cod eggs, and for both C. finmarchicus and cod embryos, CPD loads were generally lower in eggs than in larvae. Biological weighting functions (BWF) and exposure response curves that explain most of the variability in CPD production were derived from these data. Comparison of the BWF revealed significant differences in sensitivity to UV-B: C. finmarchicus is more sensitive than cod, and larvae are more sensitive than eggs. This is consistent with the raw CPD values. Shapes of the BWF were similar to each other and to a quantitative action spectrum for damage to T7 bacteriophage DNA that is unshielded by cellular material. The strong similarities in the shapes of the weighting functions are not consistent with photoprotection by UV-absorbing compounds, which would generate features in BWF corresponding to absorption bands. The BWF reported in this study were applied to assess the mortality that would result from accumulation of a given CPD load: for both C. finmarchicus and cod eggs, an increased load of 10 CPD Mb(-1) of DNA due to UV exposure would result in approximately 10% mortality.  相似文献   

18.
Ozone and UV radiation were analyzed at eight stations from tropical to sub-Antarctic regions in South America. Ground UV irradiances were measured by multichannel radiometers as part of the Inter American Institute for Global Change Radiation network. The irradiance channels used for this study were centered at 305 nm (for UV-B measurements) and 340 nm (for UV-A measurements). Results were presented as daily maximum irradiances, as monthly averaged, daily integrated irradiances and as the ratio of 305 nm to 340 nm. These findings are the first to be based on a long time series of semispectral data from the southern region of South America. As expected, the UV-B channel and total column ozone varied with latitude. The pattern of the UV-A channel was more complex because of local atmospheric conditions. Total column ozone levels of < 220 Dobson Units were observed at all sites. Analysis of autocorrelations showed a larger persistence of total column ozone level than irradiance. A decreasing cross-correlation coefficient between 305 and 340 nm and an increasing cross-correlation coefficient between 305 nm and ozone were observed at higher latitudes, indicating that factors such as cloud cover tend to dominate at northern sites and that ozone levels tend to dominate at southern sites. These results highlight the value of long-term monitoring of radiation with multichannel radiometers to determine climatological data and evaluate the combination of factors affecting ground UV radiation.  相似文献   

19.
A NOVEL EFFECT OF UV-B IN A HIGHER PLANT (SORGHUM VULGARE)   总被引:2,自引:0,他引:2  
Abstract— Two non-photosynthetic photoreceptors (phytochrome and the usual blue/UV light photoreceptor) were previously found to be involved in light-mediated anthocyanin synthesis in the mesocotyl of Sorghum seedlings (Drumm and Mohr, 1978). The decisive point is that phytochrome can act only after a blue/UV light effect has occurred. On the other hand, the expression of the blue/UV light effect is controlled by phytochrome ('obligatory sequential action'). A strong positive interaction between the blue/UV-A and the UV-B part of the spectrum was found, in addition to the above sequential action: an inductive effect of blue or UV-A light can only express itself fully if short wavelength UV (approximately 300–320nm. UV-B range) is also given, either after the blue/UV-A light or simultaneously. Since even small amounts of the UV-B are strongly effective it is probable that this effect plays a role under natural conditions and may not be considered as a mere laboratory artifact.  相似文献   

20.
Phage T7 can be used as a biological UV dosimeter. Its reading is proportional to the inactivation rate expressed in HT7 units. To understand the influence of phage proteins on the formation of DNA UV photoproducts, cyclobutane pyrimidine dimers (CPD) and (6-4)photoproducts ((6-4)PD) were determined in T7 DNA exposed to UV radiation under different conditions: intraphage T7 DNA, isolated T7 DNA and heated phage. To investigate the effects of various wavelengths, seven different UV sources have been used. The CPD and (6-4)PD were determined by lesion-specific antibodies in an immunodot-blot assay. Both photoproducts were HT7 dose-dependently produced in all three objects by every irradiation source in the biologically relevant UV dose range (1-10 HT7). The CPD to (6-4)PD ratios increased with the increasing effective wavelength of the irradiation source and were similar in intraphage T7 DNA, isolated DNA and heated phage with all irradiation sources. However, a significant decrease in the yield of both photoproducts was detected in isolated T7 DNA and in heated phage compared to intraphage DNA, the decrease was dependent on the irradiation source. Both photoproducts were affected the same way in isolated T7 DNA and heated phage, respectively. The yield of CPD and (6-4)PD was similar in B, C-like and A conformational states of isolated T7 DNA, indicating that the conformational switch in the DNA is not the decisive factor in photoproduct formation. The most likely explanation for modulation of photoproduct frequency in intraphage T7 DNA is that the presence of bound phage proteins induces an alteration in DNA structure that can result in an increased rate of dimerization and (6-4)PD production of adjacent based in intraphage T7 DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号