首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文主要介绍了二维可饱和吸收体材料在固体激光器中的应用与研究进展。简要介绍了新型二维材料的性质和优点。以石墨烯、拓扑绝缘体、过渡金属硫化物和黑磷等新型二维材料为例分析了它们在固体激光器中实现调Q或锁模的过程,展示了二维材料在脉冲固体激光研究中的重要应用前景。二维材料与固体激光器的结合,可进一步推进二维材料的研究,有望开发出大量新型固体激光器件并且作为基础光源应用于多个领域,推动相关领域的发展。  相似文献   

2.
利用半导体饱和吸收波导作为慢速饱和吸收体与非线性快速饱和吸收体相结合,建立了共同被动锁模掺铒光纤激光器的理论模型-分析了半导体饱和吸收波导、光纤自相位调制和自振幅调制对锁模脉冲宽度和脉冲啁啾的影响- 关键词:  相似文献   

3.
Ultrafast all-solid-state laser technology   总被引:3,自引:0,他引:3  
Passively mode-locked diode-pumped solid-state lasers can provide practical high-power laser sources with pico- and femtosecond pulse durations. We use semiconductors not only to optically pump but also to cw mode-lock or Q-switch a solid-state laser. A novel saturable absorber design, the Antiresonant Fabry-Perot Saturable Absorber (A-FPSA), allows of using semiconductor saturable-absorber materials even though they are generally not well-matched to the characteristics required for diode-pumped solid-state lasers, i.e., the semiconductors tend to have too much optical loss, a too low saturation intensity, and a too low damage threshold. This paper gives an overview of passively mode-locked ion-doped crystalline solid-state lasers. In particular, we present a quantitative discussion of A-FPSA mode locking, and compare A-FPSA mode locking with other passive mode locking techniques such as KLM (Kerr Lens Mode locking).  相似文献   

4.
简介了近年来发展起来的若干种新型固体激光器被动调Q用吸收体:掺Cr4+系列,Cr,Nd∶YAG自调Q激光晶体,人眼安全激光器被动调Q用吸收体,GaAs吸收体,半导体可饱和吸收镜。着重介绍了固体激光器和光纤激光器调Q用半导体可饱和吸收镜的原理、研制方法及应用状况。  相似文献   

5.
We report spectroscopic gas detection by the use of mid-infrared difference-frequency mixing of two diode lasers in a channel waveguide. The waveguide was fabricated by annealed proton exchange in periodically poled lithium niobate. We generated 3.43-3.73-mum tunable radiation in a single waveguide at room temperature by mixing diode lasers near 780 and 1010 nm. High-resolution spectra of methane were obtained in 2 s with electronically controlled frequency scans of 45 GHz. The use of highly efficient waveguide frequency converters pumped by fiber-coupled diode lasers will permit construction of compact, solid-state, room-temperature mid-infrared sources for use in trace-gas detection.  相似文献   

6.
Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon materials, including topological insulators(TIs), transition metal dichalcogenides(TMDCs), phosphorene, bismuthene, and antimonene, have witnessed a very fast development of both fundamental and practical aspects in ultrafast photonics since 2009. Their unique nonlinear optical properties enable them to be used as excellent saturable absorbers(SAs) that have fast responses and broadband operation, and can be easily integrated into lasers. Here, we catalog and review recent progress in the exploitation of these 2D noncarbon materials in this emerging field. The fabrication techniques, nonlinear optical properties, and device integration strategies of 2D noncarbon materials are first introduced with a comprehensive view. Then, various mode-locked/Q-switched lasers(e.g., fiber, solid-state, disk, and waveguide lasers) based on 2D noncarbon materials are reviewed. In addition, versatile soliton pulses generated from the mode-locked fiber lasers based on 2D noncarbon materials are also summarized. Finally, future challenges and perspectives of 2D materials-based lasers are addressed.  相似文献   

7.
This paper will review and discuss pico- and femtosecond pulse generation from passively modelocked vertical–external-cavity surface-emitting semiconductor lasers (VECSELs). We shall discuss the physical principles of ultrashort pulse generation in these lasers, considering in turn the role played by the semiconductor quantum well gain structure, and the saturable absorber. The paper will analyze the fundamental performance limits of these devices, and review the results that have been demonstrated to date. Different types of semiconductor saturable absorber mirror (SESAM) design, and their characteristic dynamics, are described in detail; exploring the ultimate goal of moving to a wafer integration approach, in which the SESAM is integrated into the VECSEL structure with tremendous gain in capability. In particular, the contrast between VECSELs and diode-pumped solid-state lasers and edge-emitting diode lasers will be discussed. Optically pumped VECSELs have led to an improvement by more than two orders of magnitude to date in the average output power achievable from a passively modelocked ultrafast semiconductor laser.  相似文献   

8.
平面波导激光器的激光介质既能实现大模体积运转,又在一维方向起到波导作用从而获得高光束质量激光输出,近年来成为高平均功率固体激光器的重要研究方向之一。对国内外平面波导激光器的研究进展进行了归纳总结,对比和分析了平面波导的双包层波导结构、梯形波导结构和自成像结构等结构特点,分析了平面波导结构的发展及趋势,并提出了平面波导激光器发展成为高功率激光器的一些限制因素。  相似文献   

9.
A method of the power summation for mutually noncoherent pulsed lasers of the same type using time interleaving is proposed and validated experimentally. The method uses an acoustic-optic deflector, which commutates radiation of different sources into one output channel simultaneously with radiation presenting in this channel. It is crucially important that the power of the final output radiation is equal to the power sum of the input sources, and the angular and coordinate parameters of an output beam are the same as that for the input sources. The experiments were carried out with single-mode diode lasers on a wavelength of 1.3 μm using a ТеО2-crystal-based deflector. The method is appropriate for the power summation for fiber-optic, diode, and solid-state lasers. We have estimated the main interrelated parameters.  相似文献   

10.
Suppression of Q-switching during mode locking is extremely important for the successful development of continuous-wave mode-locked solid-state and fiber lasers. In this paper we show that the use of inverse saturable absorption, such as two-photon absorption and free carrier absorption, can suppress Q-switching instabilities and expand the continuous-wave operating regime in solid-state and fiber lasers. Conversely, an excess of inverse saturable absorption may lead to pulse-energy limiting and induce a break-up into multiple pulses. To analyze the advantages and limitations of adding this nonlinearity, we derive and discuss the mode-locking stability criteria in the presence of inverse saturable absorption. Useful asymptotic formulas for the absorber design employing inverse saturable absorption are also derived.  相似文献   

11.
It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.  相似文献   

12.
The passive and hybrid Q-switching and mode-locking of solid-state lasers, dye lasers, semiconductor lasers and gas lasers is reviewed. The dynamics of saturable absorbers and reverse saturable absorbers is illustrated. The nanosecond pulse generation by passive and hybrid Q-switching of low-gain active media is described. The picosecond and femtosecond pulse generation by passive and hybrid mode-locking in low-gain and high-gain active media is analysed. The performance data of passively and hybridly mode-locked cw femtosecond dye lasers are collected. The pulse shortening of ultra-fast pulses with saturable absorbers in intra-cavity and extra-cavity configurations is discussed.  相似文献   

13.
Ultrashort lasers provide an important tool to probe the dynamics of physical systems at very short time-scales, allowing for improved understanding of the performance of many devices and phenomena used in science, technology, and medicine. In addition ultrashort pulses also provide a high peak intensity and a broad optical spectrum, which opens even more applications such as material processing, nonlinear optics, attosecond science, and metrology. There has been a long-standing, ongoing effort in the field to reduce the pulse duration and increase the power of these lasers to continue to empower existing and new applications. After 1990, new techniques such as semiconductor saturable absorber mirrors (SESAMs) and Kerr-lens mode locking (KLM) allowed for the generation of stable pulse trains from diode-pumped solid-state lasers for the first time, and enabled the performance of such lasers to improve by several orders of magnitude with regards to pulse duration, pulse energy and pulse repetition rates. This invited review article gives a broad overview and includes some personal accounts of the key events during the last 20 years, which made ultrafast solid-state lasers a success story. Ultrafast Ti:sapphire, diode-pumped solid-state, and novel semiconductor laser oscillators will be reviewed. The perspective for the near future indicates continued significant progress in the field.  相似文献   

14.
We describe high-power planar waveguide laser which can achieve single-mode output from a multi-mode structure. The planar waveguide is constructed with incomplete self-imaging properties, by which the coupling loss of each guided mode can be discriminated. Thermal lens effects are evaluated for single-mode operation of such high-power diode-pumped solid-state lasers.  相似文献   

15.
马骁宇  张娜玲  仲莉  刘素平  井红旗 《强激光与粒子束》2020,32(12):121010-1-121010-10
高功率半导体激光器是固体激光器和光纤激光器的主要泵浦源。激光泵浦源性能的大幅提升直接促进了固体激光器、光纤激光器等激光器的发展。主要介绍了8xx nm和9xx nm系列半导体激光泵浦源的最新研究进展,8xx nm单管输出功率已达18.8 W@95μm,巴条输出功率已达1.8 kW(QCW),9xx nm单管输出功率已达35 W@100μm,巴条输出功率已达1.98 kW(QCW)。谱宽<1 nm的窄谱宽半导体激光器输出功率可达14 W。展望了未来半导体激光器泵浦源的发展趋势。  相似文献   

16.
In this paper III‐V on silicon‐on‐insulator (SOI) heterogeneous integration is reviewed for the realization of near infrared light sources on a silicon waveguide platform, suitable for inter‐chip and intra‐chip optical interconnects. Two bonding technologies are used to realize the III‐V/SOI integration: one based on molecular wafer bonding and the other based on DVS‐BCB adhesive wafer bonding. The realization of micro‐disk lasers, Fabry‐Perot lasers, DFB lasers, DBR lasers and mode‐locked lasers on the III‐V/SOI material platform is discussed.  相似文献   

17.
In this paper the results of a theoretical and experimental investigation of synchronized passive Q-switching of two Nd:YVO4-based solid-state lasers operating at two different wavelengths, is described. A V:YAG saturable absorbing material was used as a passive Q-switch performing the synchronization of the two laser fields. This material provides Q-switching operation at both 1064 and 1342 nm wavelengths simultaneously, saturating the same energy level. By adjusting the pump power of both lasers, it was possible to optimize the overlap of the two pulse trains and to switch between different states of synchronization. A theoretical model based on rate equations, which has been developed in order to investigate optical performance of the laser system, is in a good agreement with the experimental results. The principle of synchronized Q-switching can lead to new, pulsed all-solid-state light sources at new wavelengths based on sum-frequency mixing processes.  相似文献   

18.
We report on progress in development of the low-cost, highly efficient miniature diode-pumped solid-state (DPSS) green laser sources for pico-projectors and other consumer electronics applications with wavelength 532 nm. As Spectralus laser has monolithic microchip structure there are other green lasers with various discrete designs. We are reviewing both approaches in this paper.  相似文献   

19.
PPCP用固态脉冲电源的实验研究   总被引:1,自引:5,他引:1       下载免费PDF全文
 介绍了一种采用半导体开关与磁开关、可饱和脉冲变压器相结合技术的固态脉冲电源,此电源可用于脉冲放电等离子体烟气治理。在理论分析的基础上建立了实验模型,通过实验验证了此类电源的可行性,解决了8支晶闸管开关串联的动静态均压及开通同步性问题,并对可饱和脉冲变压器及磁开关的工作特性进行了分析计算。电源在阻性负载上得到峰值电压37.5 kV、前沿101 ns、脉宽1 μs的脉冲,重复频率300 Hz,输出功率10 kW。  相似文献   

20.
Yb-Bi pulsed fiber lasers   总被引:1,自引:0,他引:1  
A new type of pulsed fiber laser is suggested and developed - Yb-Bi lasers. In such lasers the Yb fiber laser is Q-switched by use of a saturable absorber, a Bi-doped fiber placed in its own resonator, and pulsed lasing is obtained in both fiber lasers. Continous-wave diode-clad pumping of the Yb-Bi lasers at a 975 nm wavelength with power up to 16.5 W results in pulsed laser action in a spectral diapason of 1050-1200 nm with a maximum pulse energy of up to 100 microJ, an average power up to 7.5 W, and a repetition rate up to 100 kHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号