首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王杨  李昂  谢品华  陈浩  牟福生  徐晋  吴丰成  曾议  刘建国  刘文清 《物理学报》2013,62(20):200705-200705
研究了多轴差分吸收光谱技术(MAX-DOAS)的对流层NO2垂直廓线及垂直柱浓度反演方法. 该方法采用了先反演气溶胶廓线, 然后在此基础上反演痕量气体垂直分布的两步反演方法. 其中痕量气体廓线反演时采用了非线性最优估算法, 使反演更少地依赖于先验信息, 更有利于自动获取痕量气体廓线. 首先研究了应用非线性最优估算法的痕量气体垂直廓线反演算法中权重函数、 先验廓线及其协方差矩阵的计算方法, 设计了适合于痕量气体垂直分布变化剧烈地区的迭代方案. 通过计算机仿真, 研究了算法重建盒子型和抬高型NO2廓线的效果, 研究表明两种典型分布下算法都可以较好地重建2 km以下的NO2分布, 在近地面的反演精度达到0.6%. 然后在低气溶胶、高气溶胶和抬高型气溶胶三种典型条件下, 研究了算法重建同一NO2廓线的效果, 研究表明不同气溶胶条件下反演算法都可以得到相似的结果. 分析了错误的气溶胶状态对于NO2廓线反演的影响以及反演算法的误差来源. 在合肥地区开展连续观测实验, 并将观测的NO2垂直柱浓度与卫星对比, 相关性系数达到了0.85. 将MAX-DOAS反演的近地面NO2 浓度与长程DOAS 结果对比, 相关性系数达到0.76. 此外简化的MAX-DOAS痕量气体垂直柱浓度反演方法中常采用固定典型的气溶胶状态, 将两步法结果与简化方法结果进行对比, 两者的最大相对偏差为112%. 因此准确获取气溶胶状态, 尤其是气溶胶光学厚度, 对准确反演对流层NO2垂直柱浓度十分必要. 关键词: 多轴差分吸收光谱 2垂直廓线')" href="#">对流层NO2垂直廓线 2垂直柱浓度')" href="#">对流层NO2垂直柱浓度 最优估算法  相似文献   

2.
痕量气体垂直廓线的监测,对大气污染研究具有重要意义。介绍了被动多轴差分吸收光谱(MAX-DOAS)技术监测痕量气体垂直廓线的光学遥感方法。研究中MAX-DOAS测量多个角度的斜柱浓度、结合大气辐射传输模型,利用最优估算法反演出痕量气体垂直廓线,并对最优估算法参数选取和反演评估进行了详细描述。将该技术应用于合肥地区NO2垂直廓线的监测:通过与长光程差分吸收光谱仪的测量结果对比,相关系数达到0.80。该技术为大气环境立体监测提供了一种简便的方法。  相似文献   

3.
王杨  李昂  谢品华  陈浩  徐晋  吴丰成  刘建国  刘文清 《物理学报》2013,62(18):180705-180705
研究了多轴差分吸收光谱技术(MAX-DOAS)的气溶胶消光系数垂直廓线反演算法. 该算法应用非线性最优估算法, 通过MAX-DOAS测量的氧的二聚体(O4), 反演气溶胶消光系数垂直廓线和光学厚度(AOD). 首先研究了非线性最优估算法中权重函数、先验廓线协方差矩阵、测量不确定度协方差矩阵的计算方法, 针对中国气溶胶浓度较高且变化剧烈的特征, 设计了非线性迭代方案. 然后在低气溶胶、高气溶胶和抬高型气溶胶三种状态下, 通过计算机仿真模拟验证了MAX-DOAS气溶胶消光系数垂直分布反演算法, 讨论了误差来源. 之后在合肥地区开展了连续观测实验, 并将反演的AOD与CE318太阳光度计对比, 两者的相关性系数达到了0.94. AOD反演的相对误差约为20%. 又将反演的最低层(0–0.3 km)气溶胶消光系数与能见度仪对比, 两者的相关性系数为0.65. 近地面气溶胶消光系数反演的总相对误差约为10%. 模拟验证和对比实验均说明本文研究的气溶胶消光系数垂直廓线反演算法可以较好地获取对流层的气溶胶状态. 关键词: 多轴差分吸收光谱 气溶胶消光系数垂直廓线 气溶胶光学厚度 最优估算法  相似文献   

4.
大气气溶胶的直径从几纳米到几十微米不等,对大气辐射评估、全球气候变化、当地空气质量和能见度以及人类健康都有着直接或间接影响,尤其秋冬季节是雾霾高发期,更有利于大气气溶胶的生成、转化和积累。目前,用于气溶胶信息观测的技术有很多,包括激光雷达、太阳光度计、华盖计、卫星遥感等。多轴差分光学吸收光谱(MAX-DOAS)技术是一种被动遥测式光谱设备,具有稳定、可实时连续监测等特点,可同时获取多种痕量气体的浓度信息,且能反演气溶胶光学厚度(AOD)和气溶胶廓线。介绍了MAX-DOAS反演气溶胶信息的算法,并于2017年12月至2018年1月,在合肥市科学岛开展了MAX-DOAS观测,观测方位角为0度(正北),垂直方向上从低到高扫描10个仰角;反演时取中午时段的天顶方向测量光谱作为参考光谱。在337~370 nm波段,利用QDOAS软件计算出O_4斜柱浓度(DSCD),然后再利用气溶胶廓线反演算法(PriAM)反演出AOD和气溶胶消光系数(AE)。将结果与太阳光度计CE318测得的AOD做对比,小时均值和日均值的相关性系数均为0.91,结果表明MAX-DOAS在获取气溶胶信息方面具有较高的可靠性。同时,将MAX-DOAS获得的近地面气溶胶消光系数与地面站点的点式仪器测得的PM_(2.5)浓度进行了相关性对比,日均值和小时均值线性拟合相关系数r分别为0.83和0.62,进一步验证了MAX-DOAS获取气溶胶信息的可靠性。由于冬季是雾霾的高发期, AOD值较高,选取2017年12月3日至6日的一次雾霾过程,廓线结果表明气溶胶主要分布在1.5 km以下,结合当时的风场信息及雾霾期间的气流后向轨迹图,可知此次污染是西北方向污染气团输送导致的。  相似文献   

5.
研究了多轴差分吸收光谱技术的气溶胶消光系数垂直廓线反演方法,基于非线性最优估算法,通过地基多轴差分吸收光谱仪观测的O4气体差分斜柱浓度,结合大气辐射传输模型,反演气溶胶消光廓线和光学厚度.2017年7月和8月在淮北地区开展了外场观测实验,低仰角(小于15°)的O4差分斜柱浓度模拟结果和测量结果相关性高于0.9,较好反演了对流层的气溶胶状态.研究表明淮北地区夏季气溶胶含量整体较低,出现的两天高值天气(7月24日和8月12日)的光学厚度日均值为0.65和0.59,分别为季节均值的1.6倍和1.4倍.通过气溶胶消光廓线时序图可知,两天的气溶胶高值都位于0.5km以下,污染主要为本地积累产生.  相似文献   

6.
甲醛(HCHO)在大气光化学反应中扮演着重要的角色,是一种重要的气溶胶前体物和光化学氧化指示剂。大气中HCHO的来源主要是直接排放和光化学反应生成。大气光化学反应与太阳辐射强度密切相关,一般来说,太阳辐射强度越强,大气光化学反应越剧烈,HCHO的二次来源产率也就越高。故针对HCHO的研究成为当今大气环境研究的一个重要课题。介绍了基于多轴差分吸收光谱技术 (MAX-DOAS) 获取对流层HCHO垂直柱浓度(VCD)及垂直廓线的反演算法。该方法是基于非线性最优估算法的两步反演方法,首先反演气溶胶垂直廓线, 然后在此基础上反演HCHO垂直廓线。其中第二步气体廓线反演时,气溶胶廓线线型会影响气体廓线反演的权重函数从而影响气体垂直廓线反演的精度, 为此, 研究了三种不同气溶胶廓线类型(指数型、高斯型和玻尔兹曼型)对HCHO垂直廓线反演的影响。结果表明,在三种气溶胶廓线类型条件下,当气溶胶光学厚度(AOD)为0.1时,气体反演的总误差、平均核的包络线、灵敏高度上限、自由度以及HCHO垂直廓线结果都比较接近,即气溶胶廓线类型对HCHO垂直廓线反演的影响很小。而对于200 m以下(含200 m)的近地面,通过指数型、高斯型和玻尔兹曼型气溶胶廓线获取的HCHO体积混合比(VMR)与真实HCHO VMR的差异分别为36.89%,-0.04%和23.30%, 表明使用指数型和玻尔兹曼型气溶胶廓线类型反演HCHO垂直廓线会高估近地面HCHO浓度,而高斯型气溶胶廓线类型则正好相反。此外,还反演了北京国科大站点一次污染过程中HCHO的垂直廓线,分析了污染过程中HCHO的垂直分布特征。结果表明,HCHO主要集中在1.0 km以下且一天中高值出现在午后,主要来自于本地产生,即西南风将污染的VOCs气团带到观测点,经过本地的光化学反应产生HCHO而积累,造成了此次HCHO浓度升高。结合气流后向轨迹分析,来自站点西南方向的输送是引起HCHO污染的重要原因。故观测站点的HCHO主要受污染输送和二次氧化的影响。最后对比了此次污染过程中不同气溶胶条件对HCHO廓线反演的误差影响。结果显示,气溶胶浓度高时,反演的灵敏高度和自由度下降,反演的高度分辨率下降,且反演总误差增加。  相似文献   

7.
Ring效应指大气中O2和N2分子对太阳光的转动拉曼散射导致太阳夫朗禾费线变浅(被填充)的现象。气溶胶能够改变光子在大气中的光程和大气散射性质,进而影响散射次数和转动拉曼散射几率,所以可以通过观测Ring效应强度获取气溶胶信息。研究了一种利用地基多轴差分吸收光谱(MAX-DOAS)仪器观测反演气溶胶信息的新方法,基于MAX-DOAS仪器在晴朗天气下对大气Ring效应进行观测,结合Mc Artim大气辐射传输模型可以获取气溶胶消光廓线。将MAX-DOAS反演气溶胶光学厚度结果和太阳光度计观测结果进行了对比,一致性较好。研究结果表明,基于地基MAX-DOAS观测大气Ring效应反演气溶胶消光廓线是可行的。  相似文献   

8.
司福祺  谢品华  窦科  詹铠  刘宇  徐晋  刘文清 《物理学报》2010,59(4):2867-2872
介绍了基于太阳散射光的被动多轴差分吸收光谱(MAX-DOAS)技术在大气气溶胶光学厚度(aerosol optical density,AOD)监测中的应用. MAX-DOAS根据氧的二聚物(O4)在紫外、可见波段的特征吸收来确定气溶胶参数,实验中利用测量得到的O4在360 nm处斜柱浓度,并结合O4垂直柱浓度基本稳定等信息,在选取合适的气溶胶单次散射反照率、非对称因子及其廓线形状等条件下,基于大气辐射传输模型采用迭代算法解析出大气气溶胶光学厚度. 经过与太阳光度计(CE318)测量结果的对比,两者相关性达到87%. 关键词: 多轴差分吸收光谱 大气气溶胶 光学厚度  相似文献   

9.
多轴差分吸收光谱技术(MAX-DOAS)作为一种观测痕量气体成分的地基遥感手段,在反演过程中利用天顶谱扣除了平流层的影响,因而对底层大气的测定较为敏锐。采用地基被动MAX-DOAS在2011年7月5日—8月1日对北极新奥尔松地区的NO2柱浓度进行观测。观测期间4个离轴观测角的NO2差分斜柱浓度(DSCDs)结果显示,NO2主要集中在对流层底部。观测期间新奥尔松地区NO2的平均混合比为1.023E11molec.cm-3(0~1km),其含量的波动与轮船的化石燃料燃烧和大气光化学反应有关。3km内NO2的垂直分布图显示,NO2主要来自海洋边界层的释放,且随时间呈现波动变化。  相似文献   

10.
介绍了基于太阳散射光的被动多轴差分吸收光谱(MAX-DOAS)技术在大气气溶胶光学厚度(aerosol optical density,AOD)监测中的应用. MAX-DOAS根据氧的二聚物(O4)在紫外、可见波段的特征吸收来确定气溶胶参数,实验中利用测量得到的O4在360 nm处斜柱浓度,并结合O4垂直柱浓度基本稳定等信息,在选取合适的气溶胶单次散射反照率、非对称因子及其廓线形状等条件下,基于大气辐射传输模型采用迭代算法解析出大气气溶胶光学厚度. 经过与太阳光度计(CE318)测量结果的对比,两者相关性达到87%.  相似文献   

11.
大气污染物垂直廓线扫描差分吸收光谱方法研究   总被引:3,自引:2,他引:1  
差分光学吸收光谱法(DOAS)已经成为测量大气痕量气体含量的常用方法,该方法灵敏度高,可同时监测多种大气痕量气体.提出了应用差分吸收光谱方法监测大气痕量气体垂直分布,结合放置数套角反射器的近地层高塔,研制出扫描长光程差分吸收光谱(扫描LP-DOAS)系统.应用此系统于2007年夏季对北京城市重要大气污染物NO2的垂直分布进行了外场监测,准确获得了NO2沿各光路的积分浓度,确定了系统在各光路的检测限和系统总的测量误差.基于垂直廓线模型,成功反演了NO2的垂直廓线和垂直梯度.研究结果表明扫描LP-DOAS技术监测城市大气近地层痕量气体垂直分布的可行性.  相似文献   

12.
利用多轴差分吸收光谱技术反演对流层NO2   总被引:1,自引:0,他引:1  
Xu J  Xie PH  Si FQ  Dou K  Li A  Liu Y  Liu WQ 《光谱学与光谱分析》2010,30(9):2464-2469
介绍了基于多轴差分吸收光谱技术(MAX-DOAS)反演对流层NO2的方法.利用差分吸收光谱技术(DOAS),扣除太阳夫琅和费结构及Ring效应的影响,拟合得到了大气中NO2的差分斜柱浓度dSCD,结合不同观测方向的测最结果分析得到了对流层大气中NO2的差分斜柱浓度(△SCID),结合辐射传输模型SCIATRAN计算得到了大气质量因子(AMF),并进一步计算得到了对流层NO2的垂直柱浓度(VCD)信息.为确保数据的准确性和可比性,将计算结果与长光程差分吸收光谱仪(LP-DOAS)的测量结果进行对比,二者具有较好的一致性,其相关系数R2分别为0.940 27和0.969 24.  相似文献   

13.
气溶胶垂直廓线是评估污染物来源、输送等途径的必要手段。气溶胶污染对环境和人体健康带来直接的影响。该研究于2019年4-5月,利用中国科学院大气物理研究所(39.98°N,116.39°E)的地基多轴差分光学吸收光谱(MAX-DOAS)仪,对北京地区春季大气光谱垂直廓线进行了观测。凭借MAX-DOAS实时、在线、连续的观测优势,能有效的对气溶胶进行监测。MAX-DOAS基于最优估算法(OEM)以及最小二乘光谱拟合法,并以辐射传输模型SCIATRAN作为前向模型,利用海德堡廓线(HEIPRO)算法反演得到气溶胶消光系数的垂直廓线,通过对气溶胶消光系数在其路径的积分获得气溶胶光学厚度(AOD)。利用地基太阳光度计观测的AOD和高塔观测的颗粒物质量浓度垂直廓线,分别与MAX-DOAS观测的AOD和气溶胶消光系数垂直廓线进行对比,验证MAX-DOAS算法的适用性。研究结果表明,MAX-DOAS与太阳光度计观测AOD结果,相关系数为0.92,斜率为0.89。三层气溶胶消光系数与PM2.5质量浓度的皮尔森相关系数从低处到高处分别达到0.69(60 m),0.77(160 m)和0.75(280 m)。并且,将气溶胶平均消光系数和对应三层(60,160和280 m)的PM2.5平均质量浓度对比,发现两者趋势一致。同样的,为了验证MAX-DOAS是否具备准确识别污染物的长距离输送的能力,我们通过Angstrom指数确定沙尘天气,通过计算梯度理查森数和边界层高度确定静稳天气,分析了在特殊天气条件下,MAX-DOAS能够对沙尘和静稳天气做出及时、准确的响应。分析气溶胶平均消光系数,发现气溶胶垂直廓线随高度升高呈现指数衰减变化的趋势,并且气溶胶消光系数均值在1.5 km高度处约为近地面的50%左右,而在1.5 km以上消光系数会随着高度的增加而快速减小。当高度达到2 km左右时,气溶胶消光系数均值下降到了0.1 km-1。以上结果表明MAX-DOAS探测大气气溶胶垂直廓线具有较高的适用性。  相似文献   

14.
刘进  邹莹  司福祺  周海金  窦科  王煜  刘文清 《物理学报》2015,64(16):164209-164209
基于差分吸收光谱技术, 对大气痕量气体二维观测方法进行研究. 对常规多轴差分吸收光谱系统进行改进, 使望远镜可指向不同方位角, 获取测量点各方位角上的痕量气体信息, 从而更直观地了解测量点四周污染气体分布及其演变情况. 主要对NO2浓度分布进行了研究, 同时获取了不同方位角上的O4斜柱浓度; 采用辐射传输模型模拟计算O4斜柱浓度并与实测数据对比, 结果表明二者具有高度相关性, 验证了大气中O4分布的稳定性; 基于实测O4数据提取光路信息, 结合辐射传输模型对NO2和O4因廓线不同造成的散射路径差异进行修正, 将NO2斜柱浓度进一步转化为体积混合比, 获得了不同方位角上NO2 浓度分布图. 将计算结果与长光程差分吸收光谱技术数据进行对比, 结果表明二者具有较好的一致性.  相似文献   

15.
大气水汽的吸收强度从微波区域到可见蓝光区域逐渐降低,然而在紫外波段的吸收却经常被人忽略。多轴差分吸收光谱(MAX-DOAS)技术是一种被动光学遥感技术,可以同时反演气溶胶、多种痕量气体(如NO2,SO2,HCHO,HONO等)以及水汽,常用于区域大气立体分布及输送监测,具有成本低、时间分辨率高、稳定、可实时监测等特点。水汽是一种重要的温室气体,在紫外波段反演一些痕量气体时水汽的吸收经常不被考虑,可能对紫外波段痕量气体的反演造成影响,从而产生系统误差。介绍了基于MAX-DOAS对紫外波段大气水汽的反演,于2020年6月1日—9月24日在西安乾县进行观测,通过选取最优反演波段,并将反演结果与可见蓝光波段的水汽进行对比,证实了紫外波段存在水汽吸收,评估了紫外水汽的吸收对同波段痕量气体反演的影响。首先,根据不同拟合波段反演的水汽均方根误差(RMS)以及水汽和O4的吸收截面情况,选取紫外和可见蓝光波段水汽的最优反演波段分别为351~370和434~455 nm。其次,通过DOAS拟合得到紫外和可见蓝光波段O4和H2O的对流层差分斜柱浓度(DSCD), 分别将紫外和可见波段的O4 DSCD和H2O DSCD做相关性分析,两个波段O4 DSCD的相关系数r=0.85,H2O DSCD的相关系数r=0.80。为消除不同波段的辐射传输差异,将同波段的H2O DSCD和O4DSCD作比值,两个波段H2O DSCD/O4DSCD的相关系数r=0.89。紫外和可见蓝光波段H2O DSCD/O4DSCD的高相关系数表明,即使在相对沿海城市水汽浓度较低的西安市,在363 nm附近的紫外波段同样存在水汽吸收,这将会对采用DOAS技术在紫外波段反演其他痕量气体造成影响。最后,分别对可能受紫外波段水汽吸收影响的气体(O4,HONO和HCHO)进行DOAS反演误差评估,紫外波段水汽的吸收将使O4 DSCD,HONO DSCD以及HCHO DSCD在DOAS拟合过程中增加,分别对应于+1.16%,+8.55%和+9.04%的变化。  相似文献   

16.
利用DOAS技术同时反演气溶胶和大气痕量气体方法研究   总被引:2,自引:0,他引:2  
针对我国大气污染严重和气溶胶多的特点,文章开展基于差分吸收光谱(DOAS)同时反演大气痕量气体和气溶胶特性方法研究。从DOAS系统获得的总大气消光信息中,解析多种痕量气体浓度的同时,获得大气气溶胶质粒导致的光谱消光;并基于气溶胶消光信息,通过查表法反演气溶胶的平均直径、总个数和总比表面积等物理特性。实验结果表明该方法可以在获取痕量气体浓度同时,并能精确反演气溶胶物理特性。  相似文献   

17.
基于近红外被动差分吸收光谱技术(IR-DOAS)反演了大气中水汽柱浓度。从Hitran数据库中获取高分辨率截面,利用Voigt线型进行不同温压条件下的线性展宽,获得不同反演吸收截面。以仰角为90°的光谱作为参考谱,对光谱进行反演,获取垂直柱浓度。通过与太阳光度计(CE-318)进行对比发现,结果具有很好的趋势一致性,线性相关系数为0.99,且IR-DOAS的反演值与CE-318结果的差值在IR-DOAS反演误差范围内。将其应用于水汽斜柱浓度的空间分布获取发现,垂直方向水汽斜柱浓度随仰角的变化呈梯度变化,水平方向水汽斜柱浓度随观测方位角的变化几乎不变,分布均匀。  相似文献   

18.
多轴差分吸收光谱仪反演大气NO2的比对试验   总被引:1,自引:0,他引:1       下载免费PDF全文
为了满足卫星遥感产品地基验证平台中不同仪器观测数据一致性的要求, 2011年9月, 将3台不同设计方案、不同操作方式的多轴差分吸收光谱仪(MAX-DOAS) 集中在中国科学院大气物理研究所香河大气探测综合试验站, 进行了近20天的同步观测测试. 并对所有仪器统一观测方位角, 分别采用相同的紫外、可见光波段的特征吸收带及吸收截面进行NO2柱浓度的反演试验. 系统的比对分析表明: 3台MAX-DOAS的反演误差大都保持在6%以内, 说明仪器性能良好, 比较稳定; 紫外波段的反演结果略小于可见光波段, 尤其在阴天, 这是由于两波段对分子及气溶胶散射的敏感性不同造成的; 以可见光波段的反演结果为标准, 对紫外波段的反演结果进行系统订正, 订正后的各组数据一致性非常好, 满足卫星大气成分NO2柱浓度遥感产品不同地基验证站点数据稳定、一致的要求. 关键词: MAX-DOAS 2')" href="#">NO2 斜柱浓度 比对试验  相似文献   

19.
周海金  刘文清  司福祺  窦科 《物理学报》2013,62(4):44216-044216
多轴差分吸收光谱技术(MAX-DOAS)通过测量不同角度的太阳散射光, 获取痕量气体的柱浓度信息, 广泛应用于整层NO2柱浓度的监测. 由于缺少有效观测距离的信息, MAX-DOAS无法获取近地面NO2的体积混合比浓度. 本文分析了消光系数和有效观测距离的关系, 提出了利用能见度信息获取有效观测距离, 进而将MAX-DOAS测量的水平方向NO2斜柱浓度转换为体积混合比浓度的方法. 并在合肥开展了相应的观测实验, 成功实现了基于MAX-DOAS的NO2体积混合比浓度测量. 通过与主动式长程差分吸收光谱仪测量的NO2浓度进行对比, 结果呈现出较好的一致性, 说明了方法的可行性.研究为MAX-DOAS监测近地面NO2体积混合比浓度提供了一种简单有效的方法, 拓展了MAX-DOAS的应用领域. 关键词: 多轴差分吸收光谱技术 大气消光系数 能见度 2体积混合比浓度')" href="#">NO2体积混合比浓度  相似文献   

20.
利用拉曼激光雷达系统测量了合肥西郊低对流层(2km以下)大气二氧化碳浓度的垂直分布,并对获得的数据进行系统定标和滑动平均处理,反演出大气二氧化碳的垂直浓度廓线。对2014年7月到2015年12月激光雷达观测数据进行反演和统计分析,初步得到了合肥地区低对流层大气二氧化碳垂直浓度廓线的变化规律。结果表明:1)低对流层大气二氧化碳浓度垂直分布随高度增加而减小,在近地面150 m以下浓度较高,变化较剧烈,300m以上大气二氧化碳的浓度廓线趋于平稳;2)低对流层大气二氧化碳垂直浓度廓线呈明显的季节性分布特征,夏季廓线的整体浓度最小,冬季廓线的整体浓度最大;3)低对流层大气二氧化碳垂直分布与月份有一定的相关性,整体廓线约以每年2×10-6增长。通过实验发现,二氧化碳垂直浓度随着高度增加非单调递减,在大约300~700m高度区间存在二氧化碳富集区,随着天空渐渐变亮,此区间大气二氧化碳浓度有减小的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号