首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
近年来,我国卫星高光谱技术发展迅猛,高分五号、高分五号02星、资源一号02D星、资源一号02E星等相继发射为遥感领域带来了丰富的高光谱数据源。但高光谱卫星在成像过程中不可避免地会受到云及云阴影的影响,如何准确识别成为保障后续应用的关键,Fmask算法作为国内外诸多算法中的典型代表,已被Landsat和Sentinel业务化产品生产系统采用。Fmask算法作为国内外诸多算法中的典型代表,已被Landsat和Sentinel业务化产品生产系统采用。但该算法对于缺少热红外波段的数据精度偏低,例如对Sentinel-2数据的云和云阴影识别精度分别为84.5%和50%左右。鉴于此,本文通过在原有算法中优化云及云阴影识别算法结构、增加高亮地物识别辅助判据等改进手段,提出了一种适合高光谱卫星的Fmask改进算法,并在含有城区、山地、平原等三类不同下垫面场景的20景高分五号和资源一号高光谱影像中进行检验,结果表明:云识别的用户精度和生产者精度可达91.26%和99.97%,云阴影识别精度达到78.66%和79.41%,明显优于原始算法。本文算法对于高光谱数据的云及云阴影识别具有精度高、效果稳定和易于工...  相似文献   

2.
基于先验地表反射率数据库支持的动态阈值云检测算法(UDTCDA)可以显著提高卫星数据的云检测精度。为进一步提高其在波段相对较少的高空间分辨率卫星数据云检测应用中的精度,改进了UDTCDA中先验地表反射率数据与待检测卫星数据的空间匹配方法。与原方法使用重采样达到空间分辨率一致不同,该方法根据待检测影像高空间分辨率的特点,采用逐像元空间地理坐标配准的方法与真实地表反射率数据进行配准,然后进行云像元检测。该方法保留了高分辨率影像空间分辨率的优势,可以有效降低空间重采样造成的像元信息丢失。分别使用资源3号、高分1号、高分2号和高分4号高分辨率卫星数据开展云检测实验。通过遥感目视解译的方法对结果进行精度验证,并与UDTCDA云识别结果进行对比。结果表明,改进后的算法能以较高的精度识别不同高分辨率卫星影像中的云,总体精度可达到93.92%,对于碎云和薄云具有整体较高的识别精度,漏分误差和错分误差分别低于10.40%和9.57%。  相似文献   

3.
《光学学报》2021,41(9):231-238
高分五号(GF-5)卫星上荷载的可见短波红外高光谱相机(AHSI)能够同时获取330个谱段的光谱信息,对大气和陆地进行综合高光谱观测,能有效获取地物的精确信息。云的存在会对遥感影像造成污染,为了提高GF-5数据的利用率,本文结合AHSI的地物高光谱特性,研究多种下垫面背景下的云检测方法。对得到的1级产品,利用产品配套的定标系数以及光谱响应函数文件,得到各波段的大气顶层表观反射率数据。使用多种典型地物与云像元进行表观反射率的对比后发现,厚云与其他类型的像元在可见光波段具有显著差异。高光谱数据由于波段宽度窄,易受到噪声的影响,因此在进行厚云像元判定时,使用多个窄波段数据进行等效计算,得到对应的宽波段表观反射率,在此基础上使用简单的检测阈值可以将厚云筛选出来。之后使用卷云波段,筛选出潜在的薄云像元。高亮地表作为薄云检测的重点研究对象,检测时极易与薄云造成混淆,为了将薄云区域与高亮地表进行有效区分,统计不同波段之间表观反射率比值的变化,将薄云与易造成误判的高亮区域进行对比,确定最优判定波段与阈值。为了验证算法的精度,对多景AHSI影像进行目视解译,勾选出云像元区域作为基准数据。实验结果表明,本文所提方法的云检测总体精度可达91%以上,可以准确区分云与晴空区域,实现高精度的高光谱遥感影像云检测。  相似文献   

4.
基于HJ-1-CCD数据的地表反射率反演与验证   总被引:4,自引:0,他引:4  
环境一号卫星OCD相机(HJ-1-CCD)30m的空间分辨率在地物识别中具有潜在优势,然而由于缺少短波红外通道,利用暗像元法反演地表反射率较为困难.基于北京与珠三角地区的地物光谱试验,获得暗像元的植被指数与红、蓝波段反射率比值,构建基于辐射传输模型的大气校正算法.为了验证算法精度,将北京地区卫星反演值与实测的草坪、水体...  相似文献   

5.
高分四号卫星是我国首颗高空间分辨率地球静止卫星,在浑浊二类水体的遥感定量监测方面应用潜力很大。为评价高分四号多光谱数据经大气校正后水体反射率的精度,以太湖为研究区,使用同步MODIS数据辅助的Gordon单次散射改进算法,对2016年7月21日和2016年8月17日两景高分四号多光谱数据进行大气校正,并通过与地面同步实测光谱数据、以及地球静止水色卫星GOCI数据大气校正结果的协同比对,验证高分四号多光谱数据的大气校正效果,为该卫星产品的水色遥感应用提供借鉴和参考。结果表明,红光B4波段校正精度最高,平均绝对误差(MAPE)为10.71%;绿光B3波段校正精度次高,MAPE为13.21%;近红外B5波段校正精度次低,MAPE为33.06%;蓝光B2波段校正精度最低,MAPE为53.55%。其中B3,B4和B5波段校正精度高于GOCI,主要原因在于高分四号的空间分辨率远高于GOCI,混合像元导致的精度误差相对较小,充分显示了高分四号作为一颗高空间分辨率地球静止卫星在水色遥感方面的优势;而B2波段低于GOCI,表明高分四号的蓝光波段尚有改进空间,今后有必要对该波段进行重新定标等处理;在未得到有效处理的情况下,水色遥感应用应尽量避开该波段。总体而言,高分四号多光谱数据校正精度较高,可以较好的应用于内陆二类浑浊水体的定量遥感监测。  相似文献   

6.
光谱谐波分析的新型HAC非监督分类器   总被引:1,自引:0,他引:1  
高光谱影像分类是识别影像信息的重要途径之一,研究其算法对地物识别、动态变化监测和专题信息提取等方面具有重要意义。非监督分类由于其具有无须先验知识的特点,被广泛应用于高光谱影像分类。结合谐波分析理论提出一种新的高光谱影像非监督分类算法,即谐波分析分类器(harmonic analysis classifier,HAC)。首先,该算法统计第一谐波分量并绘制其直方图,根据波峰数目及位置确定初始地物类别和聚类中心像元。然后将待分类像元光谱的波形信息映射到谐波分解次数、振幅和相位的特征空间中,利用同类地物在特征空间中表现聚集性这一特征,根据最小距离原则对待分类像元进行归类。最后,计算聚类中心像元间的欧式距离,通过设置距离阈值完成类间合并,从而达到高光谱影像分类的目的。提取两种地物类别的光谱曲线,经谐波分析后得到谐波分解次数、振幅和相位量,并分析其在特征空间中的分布情况验证了HAC算法的正确性。同时将HAC算法应用到EO-1卫星的Hyperion高光谱影像得到其分类结果,通过对比K-MEANS,ISODATA和HAC算法的高光谱影像分类结果,证实HAC算法作为一种非监督分类方法在高光谱影像分类方面具有较好的应用性。  相似文献   

7.
基于单景遥感影像的去云处理研究   总被引:11,自引:0,他引:11  
去云处理是遥感图像处理以及大气纠正的重要步骤。常规的去云处理算法会随云的覆盖类型的不同而不同,如同态滤波或时间平均法,这些算法在去除云对影像影响的同时,往往会伴随地物信息的丢失。提出了基于单景遥感影像的去云处理算法———基于遥感影像分类结果及云检测结果的去云处理算法,目的是去除影像中云的散射影响,恢复地物的光谱信息。算法是针对局部有云的单景Landsat7 ETM+影像进行的。根据Landsat7 ETM+波段4,5,7对影像进行聚类分析,确定不同地物的覆盖类型;利用波段1,2,3及波段6划分出影像中的无云区以及不同覆盖厚度的云层;按照相同地物覆盖类型对非云区与不同云区进行平均反射率匹配,以达到去云的效果。结果表明,经过去云处理的影像,在分类运算中能够明显地提高分类精度,能够很好地恢复地物的光谱信息。  相似文献   

8.
光谱最小信息熵的高光谱影像端元提取算法   总被引:3,自引:0,他引:3  
端元提取是混合像元分解的关键,研究其算法在高精度的地物识别、丰度反演和定量遥感等方面具有重要意义。通过研究高光谱遥感影像光谱特征,结合信息熵理论,应用高斯分布函数,建立了一种新的高光谱影像端元提取算法,即光谱最小信息熵(spectral minimum shannon entropy,SMSE)算法。将该算法应用于AVRIRS高光谱影像的端元光谱提取,并经过与美国地质勘探局(United States Geological Survey,USGS)波谱库中的数据匹配,得知其提取端元的精度较高。同时,通过与经典的纯净像元指数(pixel purity index,PPI)和连续最大角凸锥(sequential maximum angle convex cone,SMACC)等端元提取算法进行实验比较和结果综合分析,发现光谱最小信息熵算法提取端元光谱效率更高、精度更好。此外,分别利用SMACC和SMSE提取Hyperion高光谱影像端元,得出SMSE的端元提取效果好于SMACC,从而可认为SMSE算法具有一定普适性。  相似文献   

9.
高琳  宋伟东  谭海  刘阳 《光学学报》2019,39(1):291-299
为提高影像云识别精度,提出一种多尺度膨胀卷积深层神经网络云识别方法。结合卫星影像特征,设计云识别卷积神经网络结构,该结构包含深层特征编码模块、局部多尺度膨胀感知模块以及云区预测解码模块。首先,编码模块中通过基础卷积层获取深度特征;其次,联合多尺度膨胀卷积和池化层共同感知,每层操作连接非线性函数,以提升网络模型的表达能力;最后,云区预测解码模块中融合对应编码模块的特征,再利用L1正则化上采样算法实现端对端的像素级云识别结果。选用典型云遮挡区域影像进行云识别实验,并与Otsu算法和FCN-8S算法进行对比。结果表明,本文所提算法的检测精度较高,Kappa系数显著提升。  相似文献   

10.
高分五号卫星同时搭载了温室气体探测仪(GMI)和大气多角度偏振探测仪,两者在云检测方面各有优势,但是均存在局限。提出了一种基于两者数据的协同云筛选新算法以提高温室气体反演中的云筛选效率。利用该算法检测了全球16d在轨实测数据中的77581个GMI观测点,筛选出晴空观测点9508个,占比为12.26%。利用融合后的中分辨率成像光谱仪云掩模和卷云反射率数据集,验证了该算法进行云检测的正确率,得到陆地上和海洋上的云检测正确率分别为92.93%和81.91%。  相似文献   

11.
喀斯特山区因地形复杂、地表破碎等特点使得遥感影像中阴影、混合像元及光谱变异现象普遍存在,传统基于多光谱遥感的像元二分法(DPM)在光谱变异和阴影显著的区域难以准确的对喀斯特石漠化(KRD)信息进行提取。采用高光谱遥感的混合像元分解技术可将复杂的混合像元分解为纯净的地物光谱与各地物光谱对应的混合比例,为复杂山区获取更高精度的石漠化信息提供可能。然而,由于光照、环境及大气等诸多因素的变化会引起端元发生不同程度变异,导致在混合像元分解过程中出现显著的误差,其次要从地形复杂、地表异质性强的山区影像上直接获取地物纯净光谱建立用于应对光谱变异的光谱库极其困难。因此,如何在这种情况下应对光谱变异和地形效应,获取有效、准确的对石漠化信息进行提取是当前研究的重点。针对以上问题,采用通过模拟由光照条件造成的地物反射率变化,并考虑每个波长间隔光谱变异情况的广义线性混合模型(GLMM),以减轻喀斯特地区石漠化信息提取过程中光谱变异与地形效应的影响。首先,从GF-5高光谱影像中提取喀斯特地区主要地物(植被、裸岩、裸土)的典型代表性光谱,然后基于提取的地物光谱模拟不同光照下每个像元光谱的变异情况,选择最适合的光谱组合对像元进行分解,得到最优的解混效果。为了验证方法的可靠性,利用高分辨率影像目视解译的结果作为参考对方法预测结果进行验证,同时选择未考虑端元变异的全限制最小二乘法(FCLSU)和DPM进行对比。结果表明,在地形高度复杂的喀斯特山区,考虑阴影、混合像元及光谱变异是必要的,GLMM在石漠化信息提取中总精度达到了84.89%,明显高于其他两种方法的59.68%和67.34%。通过对光照区和阴影区分别进行精度检验,发现GLMM在光照区与阴影区有着相似的精度表现,而另外两者则差异较大,阴影区明显低于光照区。这反映GLMM能较为有效地减轻地形效应的影响,对喀斯特石漠化信息提取的精度有一定提升。  相似文献   

12.
建筑垃圾“围城”已经成为现阶段城市环境治理面临的主要问题,严重制约了城市生态环境的可持续发展,做好建筑垃圾的分类对保护城市水资源、提高城市土地利用率、提升居民生活质量意义重大。该研究将GaiaSky-mini 2推扫式机载高光谱成像仪(400~1 000 nm)搭载在经纬M600Pro无人机上,选择晴朗无风的试验环境,实时获取研究区高光谱遥感影像。对采集的研究区高光谱遥感影像进行几何校正、图像裁剪、辐射校正等预处理;将研究区内地物分为背景地物和建筑垃圾两大类,其中背景地物包括芦苇、蒿子、水体、阴影、裸土和柏油路,建筑垃圾包括白色塑料、防尘布、地基渣土和瓦砾砂石;基于影像像元选取样本点,分别提取研究区内6种背景地物和4种建筑垃圾的光谱信息,制作光谱曲线,并依据光谱特征差异,选取特征波段,通过波段计算统计并选取合理阈值,利用决策树分类法实现背景地物的分离和建筑垃圾的识别提取;针对不同类别的背景地物和建筑垃圾分别选取验证样本点,对背景地物的分离结果和建筑垃圾的识别结果进行精度评价。结果表明,背景地物和建筑垃圾总体识别精度为85.91%,Kappa系数为0.845;针对建立的背景地物分离决策树,6种背景地物的分类效果均较好,其中芦苇、柏油路和裸土的生产者精度为95%,整体能较好的将背景地物分离;针对建立的建筑垃圾识别决策树,防尘布和瓦砾砂石的生产者精度为95%,白色塑料和地基渣土的生产者精度为90%,能精确的提取研究区内的建筑垃圾。研究表明决策树分类法在无人机高光谱遥感影像中实现建筑垃圾的识别与提取具有很好的分类准确度,同时也验证了无人机高光谱遥感在建筑垃圾分类提取领域的科学性和可行性,对未来建筑垃圾的分类识别工作具有一定的实际意义。  相似文献   

13.
高光谱图像立方体数据可以提供成像场景中地物在可见光和近红外波长范围内的空间信息和地物属性诊断的光谱特征信息,在目标检测与识别方面拥有得天独厚的天然优势。然而,基于高光谱图像数据的目标检测也存在一定缺陷,如经典的高光谱目标检测算法仅利用光谱维度信息检测目标,检测模型要么对背景高维特征矩阵构建的准确度不足,要么对背景先验光谱特征的完备性要求较高,导致算法对不同复杂度的检测场景适应性不强。因此,基于计算复杂度较低、参数需求量较少且检测性能较为优异的经典多目标检测算法—多目标约束能量最小化(MCEM),提出了一种基于目标与背景环境特征分离模型的高光谱目标检测修正算法(R-MCEM)。首先,设计了一个与目标形状、尺寸相近的逐像元移动运算窗口,依次计算窗口中的每个像元与窗口内其他像元的光谱距离之和D1,像元与各类目标的光谱距离之和D2。其次,采用获得D1/D2最小值的像元替换窗口内的所有像元值。然后,自左向右、自上而下逐像元移动窗口,重复窗口内每一个像元与目标、背景像元的光谱距离运算,并确定窗口内与背景相似度最高、与目标相似度最低的像元。直到移动运算窗口遍历整个高光谱图像,大幅提升了基于目标与背景...  相似文献   

14.
高分四号PMI可为防灾减灾提供稳定数据,其搭载的中红外传感器可以很好地应用于快速火灾监测中。但由于缺少传统火灾监测的热红外波段,高分四号提供的光谱信息大多作为灾中监测的辅助数据,且现有的火点识别研究所构建的火点自适应阈值检测算法受单一波段的影响,错检率和漏检率均偏高。为进一步探究高分四号数据在林火监测中的应用方法,提高火点识别精度,本研究分析高分四号数据的特点,结合单通道红外光谱的火点监测方法,应用上下文思想提出一种基于双时相影像的亮温差校正火点检测的方法来进一步提高检测精度。该方法使用灾前和灾中两期影像,具体分为时间尺度上基于空间插值的亮温补偿获取,空间尺度上的上下文自适应阈值分割以及火点判识三个部分。首先将两期影像做差值处理,并将潜在火点周围动态邻域内其他无污染像元的亮温差作为采样点进行空间插值,随后将插值结果带入灾前影像中得到灾中未发生火灾时的背景亮温,最后利用判别条件进行火点判别和虚警剔除,得到最终火点检测结果。其中在灾中背景亮温的预测研究对比了反距离加权插值(inverse distance weigh)、简单克里金插值(simple kriging)和普通克里金插值(ordinary kriging)三种插值方法,从拟合结果来看普通克里金插值既体现了像素区域的波动性又有一定的平滑效果避免峰值过高,是较为理想的拟合结果。实验以目视解译的火点数据为参照验证了山西沁源县和内蒙古呼伦贝尔新巴尔虎左旗地区的两起火灾,对比最新提出的单时相火点检测算法,研究结果表明引进的亮温差校正数据可以更好地拟合背景亮温,减少错分误差至3%,并保持综合评价指标Fβ分数在0.9以上。该方法有效结合了高分四号空间和时间的信息,未来可用于高分四号PMI数据自动化火点检测与快速提取。  相似文献   

15.
结合图论思想,提出一种高效的异源影像点云配准方法。该方法首先利用点云几何特征寻找点云中的地平面方向,将点云中建筑物的布局关系构建成图形式,使点云配准问题转化为图匹配问题;然后,提出一种图匹配方法,基于几何约束条件构建核三角形作为配准基元,利用高阶相似度信息寻找图的全局最优匹配,实现点云间的快速、稳健初配准;最后,结合迭代最近点(ICP)算法进行精配准,获得高精度异源点云配准结果。为了验证所提方法的有效性,选取河南省3个不同区域的高分七号卫星影像点云和无人机近景影像点云进行实验。实验结果表明,所提方法不受噪声点和异常值的影响,能够克服不同的点云密度差异、消除约939倍的坐标尺度差异,整体配准速度相较于对比方法提升了51~184倍,全自动地实现了异源影像点云鲁棒、高效配准。  相似文献   

16.
云的存在严重影响遥感影像质量。在航空影像的获取过程中,实时的云检测能够及时提供准确的云遮挡比例以评价影像质量,进而指导飞行方案以获取满足质量要求的影像。采用光谱特征阈值的方法,通过分析云光谱的特性,选取能够有效检测云的亮度特征I和归一化差值特征P进行组合。为实现自动检测,在一维Otsu自动阈值和带限定条件Otsu阈值的基础上,设计了阈值的分级配置策略为云特征配置合适的自动阈值,策略的主要思想是:首先采用多级分类标准对影像进行无云、薄云、厚云的类别判定,再对不同类别的影像采取不同的特征阈值配置方案,其中厚云影像的检测需要进一步分类配置阈值。该策略实现了有云情况下能准确检测云、无云情况下检测不到云的应用目标。再结合选择性自动后处理方案,真正做到云的自动、高效、准确的检测。通过与不同方法的检测结果对比分析,表明该方法的检测效率高,精度满足实时质量评定的要求,通用性强。  相似文献   

17.
为衡量国产主流2 m分辨率光学卫星的几何定位精度,本文在有理多项式(RPC)模型与区域网平差的基础上,针对不同卫星在不同地区表现出的几何定位精度的差异,提出了一种利用相同控制基准测评多星几何定位精度的方法。以河北省沽源县平坦地区作为控制区域,采用高分一号系列卫星(GF1、GF1-B、GF1-C、GF1-D)、资源三号系列卫星(ZY3-1、ZY3-2)以及天绘一号卫星(TH-1)的多幅不同高分辨率卫星影像进行单景与立体影像几何精度的评估试验。研究结果表明:在无控制点条件下,高分一号系列卫星单景影像的平面精度大都优于42 m; TH-1单景影像的平面精度约为6.36 m; ZY3-1立体影像的精度较高,平面精度约为11.29 m,高程精度约为3.43 m。在有控制点条件下,高分一号系列卫星单景影像的平面精度均优于13.3 m, ZY3-1、ZY3-2和TH-1单景影像的平面精度均优于5.46 m, ZY3-1、ZY3-2立体影像的平面精度分别约为4.01 m和4.29 m,高程精度分别约为1.71 m和1.61 m。本文方法对多颗高分辨率国产光学卫星几何定位精度的评估是合理可行的。  相似文献   

18.
基于OB-HMAD算法和光谱特征的高分辨率遥感影像变化检测   总被引:1,自引:0,他引:1  
高空间分辨率遥感影像蕴涵丰富的地物细节信息,针对高分辨率多时相遥感影像的变化检测可以更清楚认识到地理单元的变化情况,传统的遥感变化检测算法面对高分辨率遥感影像时,会出现明显的"椒盐现象"。本文借鉴面向对象图像分析的思想,以高分辨率遥感影像对象的光谱特征为分析对象,在多变量变化检测算法(multivariate alternative detection, MAD)的基础上,提出一种半自动阈值选取的OB-HMAD(object based-hybrid MAD)算法,并利用该算法进行变化检测实验对比分析。首先对高分辨率多时相遥感影像进行多尺度分割,形成多通道的影像对象;其次利用MAD变换,形成差异影像对象,并对其进行MNF变换,提高影像对象的信噪比;然后采用直方图曲率分析(histogram curvature analysis, HCA)进行半自动阈值选取,提取变化区域;最后结合实地样本数据对变化检测结果进行混淆矩阵的精度验证。结合2012年和2013年北京地区Worldview-2影像的实验可知,OB-HMAD算法融合多通道的光谱信息,可以有效的实现多时相高分影像的变化检测,基本消除了基于像元变化检测中"椒盐"现象的干扰,并在一定程度上降低建筑物阴影和几何配准误差的影响,总体精度和kappa系数也较优于其他变化检测算法,但存在较大的漏检误差。MNF变换可以有效的提高影像的信噪比,使差异信息更集中,直方图曲率分析的阈值分割算法相对其他阈值算法,自动化程度更高。  相似文献   

19.
光谱特征是地物的固有属性,分析地物光谱不仅有助于提高地物识别精度,也是定量遥感研究的基础.然而受限于尺度效应,近地空间采集的光谱与遥感像元尺度的光谱往往差异较大.因此,在遥感像元尺度上揭示湿地典型景观地类的光谱特征,将有助于大尺度湿地遥感分类和植被参数反演精度的提高.以华北平原典型的草型湖泊湿地南阳湖为对象,基于EO-...  相似文献   

20.
基于深度学习的资源三号卫星遥感影像云检测方法   总被引:2,自引:0,他引:2  
针对资源三号卫星影像波段少、光谱范围受限的特点,提出了基于深度学习的资源三号卫星遥感影像的云检测方法。首先,采用主成分分析非监督预训练网络结构,获得了待测遥感影像特征;其次,为减少在池化过程中影像特征信息的丢失,提出自适应池化模型,该模型能很好地挖掘影像特征信息;最后,将影像特征输入支持向量机分类器进行分类,获得了云检测结果。选取典型区域进行云检测实验,并与传统Otsu方法进行对比。结果表明:所提方法的检测精度高,且不受光谱范围的限制,可用于资源三号卫星多光谱影像和全色影像的云检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号