首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为满足视觉跟踪算法对跟踪精度与跟踪速度的要求,提出一种结合目标检测的多尺度相关滤波视觉跟踪算法。所提算法基于深度学习的目标检测算法找出图像中目标的位置和尺寸,利用相关滤波算法对所给出的目标特征进行视觉跟踪,并在多个尺度中搜索最优响应;当检测到相关滤波响应值异常时,停止对模型更新;当连续数帧响应值异常时,则在全图范围内搜索目标位置和尺寸。所提算法通过对跟踪状态进行评估和模型更新率自适应调整,解决了传统相关滤波类算法跟踪误差随时间积累的问题,且具有较大的跟踪速度和较高的精度。结果表明:在Matlab平台下,所提算法的平均定位精度为0.593,平均交叠率精度为0.784,帧率为65.3 frame/s。  相似文献   

2.
林彬  李映 《光学学报》2019,39(4):266-277
为了满足在线目标跟踪算法的实时性需求并提高算法的稳健性,提出一种基于高置信度更新策略的相关滤波跟踪算法。在目标区域提取、融合多特征,以构建稳健的外观表达,并利用投影矩阵对特征进行降维,以提高算法的运行效率;通过相关滤波器寻找最大响应值,从而快速定位目标;利用最大响应值和平均峰值相关能量指标,设计了一种高置信度更新策略。结果表明:所提算法在大规模公开数据集上取得了较高的跟踪精度和成功率,平均跟踪速度达到122.3 frame/s。  相似文献   

3.
为了提高复杂场景中目标跟踪的稳健性,解决由光照变化、目标形变、尺度变化和遮挡等导致的目标跟踪失败问题,提出一种自适应特征融合的多尺度核相关滤波目标跟踪算法。该算法首先通过2种不同的特征分别训练2个核相关滤波器,利用这2个滤波器响应的峰值旁瓣比和相邻两帧的响应一致性获得融合权重,同时采用自适应加权的融合策略将这2个滤波器的响应结果进行融合,完成目标的位置估计;然后以此为中心进行多尺度采样,构建尺度金字塔,并通过贝叶斯估计的方法确定目标的最优尺度;最后依据目标跟踪的置信度进行跟踪模型更新,以避免模型退化。选取51组视频序列进行测试,并与近年来性能优异的目标跟踪算法进行对比。实验结果表明,所提算法能有效降低光照变化、目标形变、尺度变化和遮挡等因素影响,对测试视频序列取得了较高的跟踪精度和成功率,整体性能优于对比算法。  相似文献   

4.
胡昭华  韩庆  李奇 《光学学报》2020,(3):131-140
针对相关滤波器的空间正则化权重与目标内容无关和跟踪过程中模型退化等问题,提出一种基于时间感知和自适应空间正则化的相关滤波跟踪算法。首先,提取灰度特征、CN(color name)特征和方向梯度直方图(HOG)特征来提升算法模型对目标的表达能力;其次,通过图像显著性检测算法获得带有目标内容信息的空间正则化初始权重;然后,在目标函数中加入自适应空间正则化项来缓解边界效应对相关滤波器的影响;最后,加入时间感知项使相关滤波器学习到相邻帧之间的信息,降低算法模型在处理不准确样本时发生过拟合的风险。在OTB-2013和OTB-2015公开数据集上对所提算法进行性能评估实验,结果表明,所提算法在多种复杂场景下都有良好的稳健性,在跟踪成功率和距离精度上优于其他对比算法,且速度达到24.2 frame/s,能满足实时性要求。  相似文献   

5.
刘万军  孙虎  姜文涛 《光学学报》2019,39(6):234-247
针对相关滤波方法对快速运动与快速变形的目标跟踪稳定性较差的问题,提出一种自适应特征选择的相关滤波跟踪算法。利用位置滤波器和颜色概率模型提取候选区域中的基础特征,对基础特征以不同的权重分配方式进行融合,得到多个融合特征。对融合特征进行可信度判定,选择可信度较高的融合特征作为当前帧的跟踪特征,估计出目标的候选位置。若最高可信度低于可信度阈值,启动检测器重新检测目标位置,否则候选位置即为目标最终位置。与此同时,对目标模型进行更新,确保模型对目标描述的准确性。在标准数据集OTB50和OTB100上进行大量实验,测试结果表明,所提出的跟踪方法在运动模糊、光照变化、快速运动等条件下具有较高的跟踪准确率和较好的稳健性。  相似文献   

6.
张哲  孙瑾  杨刘涛 《光学学报》2019,39(2):251-259
提出一种融合相关滤波与关键点匹配的跟踪算法。利用多个基于支持向量机的相关滤波器,分别对目标进行跟踪和验证,同时建立并实时更新一个目标和背景关键点数据库。在验证跟踪失败后,利用关键点匹配的方法对全局关键点进行分类,根据分类结果对目标关键点进行分析,从而得到重检测结果。实验结果表明,在运动模糊、变形、目标遮挡、消失等复杂跟踪场景下,所提算法比现有算法具有更好的准确性和稳健性。  相似文献   

7.
常敏  沈凯  张学典  杜嘉  李峰 《光学学报》2019,39(9):228-236
针对复杂场景下单个特征的稳健性差,以及目标存在背景干扰和目标遮挡时跟踪失败的问题,提出一种基于自适应特征融合和模型更新的相关滤波跟踪算法。该算法在核相关滤波的基础上,通过对不同特征的响应图采用平均峰值-相关能量的方法进行加权求和,实现了响应图层面的自适应特征融合。根据响应图的峰值特性计算自适应权重,以其作为置信度确定模型的更新率,进而设计自适应模型更新方法。实验结果表明,该算法能够很好地适应背景干扰、目标遮挡、旋转运动等复杂场景,与近年来优秀的相关滤波跟踪算法相比,所提算法的平均距离精度比其中最优的算法提高了2.64%,平均重叠精度提高了1.54%。  相似文献   

8.
为了解决相关滤波视觉跟踪算法在复杂场景中产生的跟踪漂移问题, 提出一种融合检测机制的相关滤波跟踪框架。利用时空正则化滤波器作为跟踪器, 同时使用线性核相关滤波器作为检测器。当跟踪器与目标进行相关计算得到的响应图为多个峰值时, 激活检测器, 对多个峰值进行相关匹配, 获得重检测结果; 同时, 使用平均峰值相关能量的滤波器模型更新策略得到更加可靠的检测器, 以达到提高跟踪精度和算法鲁棒性的目的。在OTB2015、Temple color 128和VOT2016数据平台上的实验结果表明, 与近年提出的性能较出色的跟踪算法相比, 本文算法在目标运动模糊、相似背景干扰和光照变化等复杂场景中具有更好的鲁棒性和准确性, 且跟踪精度和成功率上均有提高。  相似文献   

9.
基于多层深度卷积特征的抗遮挡实时跟踪算法   总被引:1,自引:0,他引:1  
为提高复杂场景中目标跟踪算法的准确性与实时性,提出一种基于多层深度卷积特征的抗遮挡实时目标跟踪算法。针对目标跟踪任务,先对深度卷积网络VGG-Net-19进行微调,再提取目标区域的多层深度卷积特征。根据相关滤波框架构建位置相关滤波器,确定目标中心位置。设计尺度相关滤波器对目标区域进行不同尺度采样,确定目标尺度。目标遮挡时,采用阶段性评估策略进行模型更新与恢复,解决模型误差积累问题。选取目标跟踪评估数据集OTB-2015(100组视频序列)与UAV123(123组视频序列)进行测试。实验结果表明,本文算法具有更高的准确性,能够适应目标遮挡、外观变化及背景干扰等复杂情况,平均速度为29.6 frame/s,满足目标跟踪任务的实时性要求。  相似文献   

10.
毛宁  杨德东  李勇  韩亚君 《光学学报》2019,39(4):255-265
提出了一个基于形变多样相似性的空间正则化相关滤波跟踪算法。在核相关滤波(KCF)跟踪算法基础上引入了空间正则化权重和子网格检测方法,利用形变多样相似性匹配算法构建了目标重检测模块,利用主成分分析(PCA)算法和k维树一致近似最近邻(TreeCANN)算法解决了匹配算法中的最近邻搜索问题;通过自适应模板更新策略,解决了遮挡情况下模板误更新问题。实验结果表明,所提算法的精确度得分为0.825,成功率得分为0.625,相比KCF算法分别提升了18.5%和31.0%。所提算法能较好地解决目标尺度变化、遮挡、快速运动、旋转和背景杂乱情况下的跟踪问题,具有广泛的应用前景。  相似文献   

11.
熊昌镇  卢颜  闫佳庆 《光学学报》2019,39(4):278-286
为提升融合梯度直方图特征和颜色属性特征的有效卷积操作跟踪算法(ECO-HC)的跟踪精度和速度,提出一种融合上下文和重定位的加权相关滤波跟踪方法。根据梯度直方图和颜色属性的不同特性加权融合相关滤波响应值,采用自适应迭代方法预测目标位置;融合多尺度搜索区域,目标上下文特征和目标预测失败时重定位方法进一步提高跟踪精度。在标准数据集OTB-100上进行算法评估,实验结果表明,所提算法的平均距离精度为89.2%,平均重叠率精度为80.6%,比ECO-HC算法分别高3.6%和2.1%。中央处理器的跟踪速度达65.2 frame/s,优于实验中对比的其他跟踪算法。所提算法有效地提高了跟踪精度,在严重遮挡、光照变化等干扰下,仍能较好地跟踪目标。  相似文献   

12.
为提升分层卷积相关滤波跟踪算法的速度和精度,减少无效卷积通道特征对跟踪精度的影响,提出一种自适应特征选择的分层卷积相关滤波跟踪方法.该方法选取能表征目标的双层卷积特征,将相关滤波训练与预测合并,在视频序列的每一帧计算上一帧目标区域与非目标区域的卷积特征均值比,选取满足特征均值比要求的卷积通道特征训练相关滤波分类器,根据分类器与目标特征的最大响应值预测目标位置;最后根据预测结果稀疏更新目标初始帧特征,作为后续帧训练分类器的依据.在OTB-100标准数据集上对算法进行测试,实验结果表明本文算法的平均距离精度为91%,平均重叠率精度为64.4%,平均速度为21.7帧/秒,比原分层卷积相关滤波跟踪算法分别高出7.3、8.2个百分点和11.3帧/秒,该算法的平均距离精度比高精度的连续卷积跟踪算法(CCOT)高1.2个百分点,跟踪速度是CCOT的近20倍.本文算法可以有效提升分层卷积跟踪算法的速度和精度,在目标发生遮挡、快速运动等干扰时能稳定跟踪到目标.  相似文献   

13.
14.
当目标远离红外系统,其在成像图像上的尺寸较小且信息量较少,使得小目标的持续精确定位成为一项有挑战性的问题。针对这一问题,在相关滤波跟踪框架上,引入能够区分红外弱小目标边缘信息与杂波噪声的侧窗图像滤波方法,提出了一种弱小目标跟踪算法。具体来说,首先利用时空正则化的相关滤波跟踪模型,对目标位置附近更大范围的背景进行考虑。然后,利用侧窗滤波对当前局部搜索区域进行侧窗滤波处理,达到了保留边缘效果的同时剔除了图像噪声。最后,通过原始图像与滤波后图像作差,降低了背景边缘对目标定位错误的影响,并实现小目标状态估计。为验证本文所提算法性能,采用六组红外真实弱小目标图像序列进行实验,并与核相关滤波、空间正则化的相关滤波,以及时空正则化的相关滤波等经典算法作比较。实验结果表明,所提算法在多组复杂背景的图像序列上,获得了较高的跟踪精度,验证了所提算法能有效应对红外弱小目标跟踪任务中的快速运动、低分辨率和强背景杂波等问题。  相似文献   

15.
基于深度学习的目标跟踪算法由于其良好的性能已经成为目标跟踪领域的主流算法之一。其核心思想是进行前后帧的相似性学习从而完成模板帧与搜索帧的匹配。其中,相似性学习是影响跟踪算法性能的关键一环。以孪生网络的相似性学习为切入点,对现有的深度互相关(DW-XCorr)的相似性学习方式进行改进,提出了一种多尺度相似性学习的目标跟踪算法。该算法在SiamRPN的基础网络框架下,构造多尺度互相关(Multi-Scale Cross Correlation,MS-XCorr)模块,对原有的互相关操作进行多尺度的改进,从而增加学习特征尺度的多样性,提高了跟踪网络相似性学习的效率,最终使得算法跟踪性能有进一步提升。在实验部分,将改进后的算法与其基线进行了对比实验,该算法在成功率(Success Rate)、精度(Precision)及平均精度(Norm Precision)上均有提升,成功率提高了4.3%,精度提高了4.4%,平均精度提高了4.0%。实验表明,多尺度互相关模块相较于深度互相关模块具有更强的相似性学习能力,提出的多尺度相似性学习的目标跟踪算法在目标光照、形态变化、遮挡以及干扰等复杂场景下具有更...  相似文献   

16.
随着现在的社会发展以及经济进步,我国的科学技术方面发展迅速,特别是在技术监控方面更是突飞猛进。为了更好的对目标遮挡影响进行降低,我国在这方面主要依据自适应的技术发展背景下提出目标跟踪计算法,用来完善我国的监督控制技术。这种计算方式第一是根据对观察目标的基本外观形态进行的鉴定与跟踪,将其自身的运动量进行平均计算;其次是根据时空的运行方向与特征进行跟踪目标的计算,建立比较完善整体的运行模型,再根据这个运动模型以及整体的状态对监督目标进行检测与控制,这期间就会形成一种遮挡掩膜。对于掩膜是一种将程序数据等绘制成光刻板,在程序使用期间非常可靠,并且制造成本比较低,使用方便;最后是在不同的使用情况下将不同参数进行收集,自动的适应运动模型的运行。针对这种计算方式的实验主要是利用两种在国际上经常使用的CAVIAR、York数据进行测试,并且根据这两种数据对测试的精准度与多重目标跟踪等进行评定,检测跟踪的整体性能。通过多方面的研究表明这种方式的跟踪的性能非常好,并且还能很好的将跟踪目标的鲁棒性进行遮挡。  相似文献   

17.
为了实现复杂环境下已知模型目标姿态的快速跟踪和估计,提出了一种结合三维(3D)粒子滤波跟踪和M-估计优化的位姿跟踪估计算法。基于直线的多级向量表示构造了新颖的模型直线和图像直线相似性度量函数;基于粒子滤波跟踪的姿态设计了模型直线和图像直线快速对应方法;利用M-估计实现了目标姿态的优化估计;利用重要性采样方法将优化姿态有效地融合到了粒子滤波框架。另外根据预测的目标位姿定义了图像动态感兴趣区域(ROI),极大地减少了特征检测和搜索的时间。实验表明,所提方法能够实现复杂环境下自由移动目标的快速跟踪和位姿的高精度解算,相比已有方法,所提方法在跟踪精度,计算效率以及稳健性上均有优势。  相似文献   

18.
在目标遮挡、光线变化等复杂的跟踪环境下,现有相关滤波跟踪算法无法对目标进行长时间实时稳定跟踪。提出一种基于模型更新与快速重检测的长时跟踪算法。首先,在现有的目标定位与尺度变化的相关滤波跟踪算法基础上搭建长时目标跟踪的框架,提出加入模型监测更新机制,根据最大响应和平均峰响应相关能量值判别进入更新或重检测环节;然后,基于提取描述子特征的重检测方法,将提取特征的比特维数统一降到512进行优化,加快重检测速率。所提算法选取OTB-100中20个有代表性的序列进行测试,成功率评估均值为0.706,精确度评估均值为0.805,平均速度为48.5 frame/s;在自采集的数据集上平均准确率能达到87.65%,能够在尺度变化、遮挡等复杂情况下满足长时跟踪的准确性和实时性要求。  相似文献   

19.
针对虚拟现实跟踪技术的快速滤波算法   总被引:2,自引:0,他引:2  
常红  王涌天  阎达远  周雅  华宏  徐彤 《光学学报》2000,20(9):224-1228
提出一种用于实现手位手形跟踪的颜色滤波方法的计算模型。它可以取代虚拟现实中的数据手套,成为人机交互的工具。本方法是基于计算机视觉技术,模仿人眼的颜色视觉的特性,通过提取手的像素的特征颜色作为参考,对整个图像进行颜色滤波处理,从而将背景和干扰物体的像滤除,只保留手的像。然后经过平滑和轮廓提取处理,得到只含有手的轮廓的图像。颜色滤波算法能大大提高跟踪和识别的可靠性和实时性。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号