共查询到20条相似文献,搜索用时 9 毫秒
1.
偏折术作为一种高精度的面形检测方法,其测量精度不仅依赖于系统参数的标定精度,还受到显示器面形的影响,尤其是对于常用的基于平面镜反射模型实现系统标定的偏折术测量系统,显示器面形还会直接影响系统参数的标定精度。为了研究显示器面形对拼接偏折术测量精度的影响,首先预设了不同形变量的显示器面形,再依据提出的计算方法分析了其对系统标定精度以及测量精度的影响,结果证明显示器面形不仅会降低系统参数的标定精度,还会在待测元件的面形测量结果中引入较大的低阶项及高阶项误差。最后通过与实验结果对比,进一步验证了所提出方法的正确性,该研究为拼接偏折术检测系统的测量误差提供了一种定量计算分析方法。 相似文献
2.
针对位相测量偏折术(phase measuring deflectometry,PMD)在光学元件面形的高精度检测中存在面形低阶误差控制困难等问题,介绍了位相测量偏折术检测平面光学元件面形的基本原理,对有关PMD技术的面形改进重建算法、相对检测和四步剪切的系统误差扣除方法的研究进展进行了阐述,分析了基于PMD技术实现对口径398.7 mm×422.8 mm平板玻璃的拼接检测以及平面元件中可能存在的寄生反射影响的消除方法。指出建立的6相机斜率拼接检测系统的检测精度RMS可达1 μm,利用多频条纹法和二值条纹法可有效地消除寄生反射的影响,为大口径光学平面元件的前、后表面面形高精度检测提供一种可行的方案。 相似文献
3.
4.
5.
一种用于光学平面面形误差绝对测量的新方法 总被引:2,自引:1,他引:2
本文探讨了一种可绝对测量光学平面面形误差的新方法,利用该方法可以消除或修正干涉仪测量光学平面面形误差时所存在的固有系统误差和参考光学平面本身的面形误差,同时也对干涉仪进行了绝对校准。 相似文献
6.
7.
8.
相位偏折术中,系统标定精度对面形测量精度具有决定性的影响。采用带标记点标靶进行标定时,由于其表面不是理想平面而引入误差,导致虚像姿态求解不精确,进而影响标定精度。通过使用高精度的标准平面镜作为反射镜,从初始系统参数开始,采用交替方向优化的方法实现系统几何参数的标定,提高了标定精度,同时避免了变量过多导致的矩阵病态问题。使用该方法对双目相位测量偏折系统进行标定后,对100 mm口径的标准平面镜进行了对比测量。由测量面形可知,该方法可显著降低测量均方根误差和低频面形误差。相比于传统带标记点标靶的方法,有效提高了标定的精度和稳定性。 相似文献
9.
10.
针对自由曲面微小透镜检测中无法同时高精度检测前后表面的问题,提出一种基于光学偏折的微小透镜前后曲面同步测量方法。该方法基于高精度的透射波前检测系统建立理想光线追迹模型,并在利用光学偏折高精度测得的含有被测微小透镜面形信息的透射波前像差基础上,以被测微小透镜的前后两个曲面为优化变量,进行数值迭代优化求解,最终基于优化结果重构出被测微小透镜各表面面形误差。对所提出的面形测量方法进行仿真与实验验证,并通过Zygo干涉仪进行比对实验,结果显示对于口径为6 mm的微小透镜,所提方法的检测结果与比对实验的检测结果高度一致,面形偏差的均方根误差值仅为几十纳米。 相似文献
11.
随着光学非球面行业的快速发展,生产面形精度优于0.1μm的非球面镜片产品已成为趋势。在非球面镜片的面形检测中,由于存在机械系统误差,被检测工件的坐标存在6个自由度的偏差,这将直接影响非球面的面形测量精度。因此,针对检测系统,需要开发不确定度只有几十纳米的误差校正算法,以保证测量结果更贴近实际。通过数据仿真,在理想非球面的基础上叠加位置误差和面形误差以获得非球面原始三维数据,进而利用修正后的Levenberg-Marquardt全局优化算法,将所获原始三维数据与非球面标准方程作对比,并利用均方根(RMS)误差最小原理,成功分离和校正了非球面的位置误差。针对4种不同规格型号的玻璃非球面镜片,通过将实验结果与商用非球面轮廓仪UA3P的测量结果作对比,得出高匹配的结果,二者的峰谷值之差小于5 nm,均方根相差约为0.1 nm,结果验证了算法的准确性和稳健性。 相似文献
12.
透射显示双屏偏折系统解决了传统方法无法测量非连续镜面三维形貌的难题,其使用透明显示屏,既增大了测量视场又减小了系统结构的复杂性。但透明显示屏的折射效应会导致三维测量结果产生误差。在分析透射显示双屏系统中折射光路的基础上,提出一种透明显示屏折射误差补偿方法。首先分析透射显示双屏系统测量原理及折射误差产生原因。在参数标定过程中,从相位角度对透明显示屏引入的折射误差进行补偿。在所研制的测量系统上验证所提出的折射误差补偿方法。实验结果表明,该方法消除了折射效应带来的误差,提高了镜面物体三维形貌测量的精度。 相似文献
13.
对于传统的相位测量偏折术,基于反射定理的测量原理导致其难以完成具有大陡度的大曲率元件曲率半径全口径测量。因此,传统单目偏折术与平面反射镜相结合的测量方法被提出。然而,现有的测量方法中需将安装于显示器上的平面反射镜严格处于45°倾斜状态,并在水平方向与相机光轴的夹角为45°,这无疑使实验装置的调整难度大大增加。提出了一种基于成像透镜入瞳中心标定的测量方法,该方法只需要利用显示器的平移来获得成像相机的入瞳中心即相机的投影中心,而无需精确调整相机和平面反射镜的姿态,操作简单,易于实现。实验中测量了曲率半径均值为8.262 mm的凸球面光学元件,测量得到其每点的平均曲率半径均值为8.321 mm,PV为0.212 mm,相对误差约为0.71%。相比于现有的正入射光路,所提方法不仅实验装置调整难度低,而且还能保证较高的实验测量精度,验证了该方法的可行性。 相似文献
14.
15.
16.
振动会使高精度面形测量产生误差。建立了振动对干涉测量面形的误差模型,应用13步移相算法分析了在振幅为63 nm时的误差情况。分析结果表明,当面形测量误差的敏感频率为12 Hz时,振动引起的面形均方根(RMS)误差约为12 nm。通过实验进行了验证,仿真分析结果和实验结果基本相同。实验分析了在12 Hz时,振幅为5~63 nm时,对应的测量面形RMS误差为1~7.1 nm,振幅和RMS误差线性增大。为不同振动频率和振幅引起的面形RMS的误差分析和高精度面形测量的振动环境控制提供了一定的参考。 相似文献
17.
在相位测量偏折术(Phase Measuring Deflectometry,PMD)中为获取面形梯度,需要分别获取水平和垂直相移条纹图像,因此所需图像通常较多。为了减少条纹投影幅数,提出一种新的基于复合条纹的相位获取方法,通过将水平和垂直相位信息叠加形成斜条纹,实现基于5幅复合斜条纹的相位获取方法,相位测量精度高于5步正交光栅相移方法。进一步当系统存在非线性响应时,提出了基于7幅斜复合条纹的相位获取方法,可有效消除系统2阶非线性误差。计算机仿真和实验表明所提方法切实可行,其测量精度高于采用同样帧数的正交条纹方法。 相似文献
18.
基于傅里叶变换轮廓术方法的复杂物体三维面形测量 总被引:38,自引:16,他引:38
提出一种在数字加权滤波和调制度分析基础上形成可靠性控制模板,并按可靠度排序进行位相展开的新方法,该法用于傅里叶变换轮廓术中,可以兼顾所求位相精度和位相展开的可靠度,适合复杂物体面形的测量,给出了傅里叶变换轮廓术对复杂物体面形测量的应用实例。 相似文献
19.