共查询到20条相似文献,搜索用时 0 毫秒
1.
为提高用户公交出行积极性、方便管理部门合理调度公交班次,利用大数据分析公交浮动车辆历史GPS数据,考虑不同线路、公交站点地理位置、不同驾驶员、气象情况、时间分布等多因素的影响,建立了一种基于门控循环单元(gated recurrent unit, GRU)神经网络的公交到站时间预测模型。该模型结合5 000多万条原始数据,借助分布式Hadoop集群中的Spark弹性分布式数据集进行数据清理,并运用站点匹配算法进行源数据匹配、Lasso算法优化特征选项及去除干扰。实验仿真结果表明:改进的GRU模型R-square拟合度达到94.547%,并且算法效率较传统长短期记忆(long short-term memory,LSTM)神经网络提高了近14%,为进一步提高公交到站时间的预测精度与效率提供了参考。 相似文献
2.
为丰富地铁内部换乘客流预测理论,更好地制定地铁运营计划,提出了一种基于时间序列分解方法(STL)与门控循环单元(GRU)的地铁换乘客流预测模型。该模型将预测过程分为3个阶段,第1阶段为原始地铁刷卡数据预处理,采用基于图的深度优先搜索算法识别乘客的出行路径,构建换乘客流时间序列;第2阶段运用STL时间序列分解算法将换乘客流时间序列转化为趋势量、周期量以及余量,并利用3σ原则对余量进行异常值的剔除与填充;第3阶段基于深度学习库Keras,完成GRU模型的搭建、训练及预测。以北京地铁西直门站的换乘客流数据为研究对象,对模型的有效性进行了验证,结果表明:与长短时记忆神经网络(LSTM)、门控循环单元、STL时间序列分解方法与长短时记忆神经网络组合模型(STL-LSTM)相比,STL-GRU组合预测模型可提升工作日(不含周五)、周五、休息日的换乘客流预测精度,预测结果的平均绝对百分比误差至少分别降低了2.3、1.36、6.42个百分点。 相似文献
3.
多变量时间序列各变量间依赖性较强,数据变化趋势不明显,预测难度高.传统研究采用带门控机制的循环神经网络及变体进行预测,但序列间存在相互依赖关系,突变数据段建模预测不精确.基于信息熵,本文提出一种新的改进门控权重单元,利用信息熵技术量化数据序列的变化程度,动态调整权重矩阵刻画数据的变化趋势.基于4个公开数据集分别进行实验,实验结果表明新模型比传统循环神经网络模型具有更好的预测性能. 相似文献
4.
汽轮机热耗率是火电机组运行过程中的一项重要监测指标。为建立更加准确的汽轮机热耗率预测模型,借助某1 000 MW火电机组的真实历史数据,提出一种基于双向门控循环单元(gated recurrent unit,GRU)神经网络的汽轮机热耗率预测模型。针对火电机组现场运行数据噪声大的问题,采用SG(Savitzky-Golay)滤波器对所选变量数据进行降噪处理,将处理后的数据作为建模样本构建双向GRU神经网络汽轮机热耗率预测模型。并将其与BP(back propagation)神经网络、传统循环神经网络等2种算法的模型预测结果进行对比,结果表明:双向GRU神经网络热耗率预测模型的预测精度更高,泛化能力和鲁棒性更强,能够满足现场的实际需求。 相似文献
5.
6.
金融时间序列预测中的神经网络方法 总被引:6,自引:0,他引:6
概述了神经网络方法在金融时间序列预测应用中所面临的有关问题,给出了解决方法;针对有关模型和算法作了计算模拟与分析,得到了一些可供今后研究参考的经验结果;讨论了金融时间序列预测中主要的神经网络模型,如多层前馈网络、径向基函数网络以及支持向量机网络等.总结了关于模型改进的一些近期研究进展与结果,指出了神经网络用于金融时间序列预测的一些可能的方向. 相似文献
7.
时间序列数据分析可用于识别长期趋势并进行正确的预测,与人工神经网络(artificial neural network, ANN)相比,门控循环单元(gated recurrent unit, GRU)可以处理时间序列信号,在自然语言处理、语音识别、机器翻译等方面有着广泛的应用。然而,由于参数和模型的复杂性,GRU模型在硬件实现中遇到了瓶颈。文章构建一个基于忆阻器的GRU硬件电路,具有完整的GRU功能,而且输入/输出参数更少。仿真结果表明,电路的平均误差为0.007 5,能够有效地实现GRU网络的功能。将设计的GRU电路应用在搭建的序列预测模型中,可以预测股票价格变化趋势,且其预测的R2分数达到0.923 4。因此基于忆阻器的GRU硬件电路的设计在机器学习和人工智能方面具有一定的应用潜力。 相似文献
8.
9.
积单元神经网络预测噪声环境的混沌时间序列 总被引:4,自引:0,他引:4
用人工神经网络预测噪声环境的混沌时间序列是一个重要的问题,因为许多实际的时间序列数据都是含噪声的。提出一种利用积单元神经网络(PUNN)预测噪声环境的混沌时间序列的方法,它采用了粒子群优化器(PSO)训练PUNN网络。用所提方法对Lorenz混沌序列做了仿真实验,结果表明:所提方法结构简单、泛化能力强,是一种有效的方法;当PUNN网络的输入节点数目为2或3时,预测精度更高,而且泛化能力也更强。 相似文献
10.
5-甲基胞嘧啶(5-methylcytosine, m5C)是一种重要的转录后修饰,大量证据表明,m5C在许多生物学过程中起着至关重要的作用.准确鉴定m5C位点有助于更好地了解其生物学功能.为此提出了一个名为pm5C-BGRU的模型,该模型通过拼接独热编码(One-hot encoding)和核苷酸化学性质(nucleotide chemical property, NCP)进而对RNA序列进行特征提取,并基于双向门控循环单元(Bidirectional Gated Recurrent Unit, BiGRU)来识别m5C位点.将该方法在人类、小鼠和拟南芥三个物种的m5C数据集上进行建模和测试,并对照已有的预测模型进行评估.结果表明,pm5C-BGRU在交叉验证和独立数据集测试中均取得优异效果,该模型有望成为鉴定m5C位点的有力工具. 相似文献
11.
为解决基于RNN(Recurrent Neural Network)的序列推荐模型在处理长序列时易出现梯度消失或爆炸从而导致推荐模型训练过程不稳定问题,在传统门控循环单元(GRU:Gated Recurrent Unit)基础上,引入了残差连接、层归一化以及前馈神经网络等模块,提出了基于深度残差循环神经网络的序列推荐模型DeepGRU。并在3个公开数据集上进行了验证,实验结果表明,该DeepGRU相较于目前最先进的序列推荐方法具有明显的优势(推荐精度平均提升8.68%)。消融实验验证了引入的残差连接等模块在DeepGRU框架下的有效性。并且,该DeepGRU有效缓解了在处理长序列时训练过程不稳定的问题。 相似文献
12.
13.
吸收塔内浆液的PH值是影响燃煤电厂湿法脱硫系统效率的重要参数。燃煤电厂的湿法脱硫系统具有大滞后、非线性、强耦合等特征,因而其吸收塔浆液的PH值很难实现精准控制。本文利用门控循环单元(gated recurrent unit, GRU)神经网络在处理时间序列数据的优越性,对吸收塔内的浆液PH值进行预测建模,通过将燃煤电厂采集的影响浆液PH值的变量数据作为模型的输入,对模型进行训练处理,获得吸收塔内浆液PH值的预测模型。将预测模型应用于辽宁省华能营口电厂600MW机组湿法脱硫智能控制系统中吸收塔内浆液PH值的预测。结果表明相比于反向传播(back propagation, BP)神经网络模型、径向基函数(radial basis function, RBF)神经网络、循环神经网络(recurrent neural network, RNN)和长短期记忆(long and short term memory, LSTM)神经网络,该模型精确度更高,实用性更强。 相似文献
14.
基于RBF神经网络的时间序列预测 总被引:3,自引:0,他引:3
分析了RBF神经网络的结构和学习算法,利用RBF神经网络和Matlab神经网络工具箱建立人口数量预测模型,并应用该模型对中国人口数量进行了预测. 相似文献
15.
用人工神经网络预测噪声环境的混沌时间序列是一个重要的问题,因为许多实际的时间序列数据都是含噪声的.提出一种利用积单元神经网络(PUNN)预测噪声环境的混沌时间序列的方法,它采用了粒子群优化器(PSO)训练PUNN网络.用所提方法对Lorenz混沌序列做了仿真实验,结果表明所提方法结构简单、泛化能力强,是一种有效的方法;当PUNN网络的输入节点数目为2或3时,预测精度更高,而且泛化能力也更强. 相似文献
16.
基于改进堆叠式循环神经网络的轴承故障诊断 总被引:1,自引:0,他引:1
提出基于改进堆叠式循环神经网络的轴承故障诊断模型.利用深层网络极强的非线性拟合能力以及循环神经网络特有的沿时间通道传播的特点,通过门控循环单元解决堆叠式循环神经网络梯度消失的问题,实现对轴承健康状况的分类识别.利用美国凯斯西储大学轴承数据集进行了轴承故障诊断试验,同时将支持向量机、粒子群优化的支持向量机、人工神经网络、卷积神经网络AlexNet以及循环神经网络作为对比以检验所提模型的分类性能.结果表明,提出的模型能够对轴承故障进行有效诊断,并且具有一定的可靠性与泛化能力. 相似文献
17.
针对PM2.5浓度预测模型效果不稳定、泛化能力差的问题,以循环神经网络和注意力机制为基础,提出了二向注意力循环神经网络(TDA RNN)。首先,TDA-RNN模型通过注意力机制获取输入数据的时序注意力和类别注意力,并将其进行融合;然后通过特征编码器对融合后的数据进行编码,获得中间特征;最后将中间特征与PM2.5浓度的历史信息融合,并通过特征解码器获取预测值。对北京地区的PM2.5浓度进行了预测。结果表明,相比前向型神经网络、长短期记忆神经网络、门控循环单元模型和滑动平均模型,TDA-RNN模型预测精度更高;在抗干扰测试中,当输入数据存在无关因素时,TDA RNN模型的预测精度出现轻微下降,但仍高于其他模型。该二向注意力循环神经网络特征提取能力强,预测精度高,同时可适用于其他场景的多变量时间序列预测。 相似文献
18.
Elman神经网络是一种典型的回归神经网络,比BP神经网络具有更强的计算和适应时变特性的能力,因而非常适用于预测股市这一类极其复杂的非线性动力学系统。文章给出一种基于Elman神经网络的股票市场建模、预测及决策方法,对浦发银行股价在时间序列上作了连续若干天的短期预测,实验结果取得较高的预测精度、较为稳定的预测效果和较快的收敛速度。这表明该预测模型对于个股价格的短期预测是可行和有效的。 相似文献
19.
RBF网络是一种新颖有效的前向型神经网络,它通过非线性基函数的线性组合实现从输入空间RN到输出空间RM的非线性转换,特别适合于非线性时间序列如股票市场等金融系统的预测.本文以中集集团的实际收盘价作为预测对象,提出基于RBF网络的个股价格预测模型,仿真实验表明,该模型对于个股价格的短期预测是可行有效的. 相似文献