共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Frens法制备金纳米粒子溶胶,通过界面自组装技术在掺磷的非晶碳衬底表面构筑三维的金/氧化石墨烯/金复合结构.以罗丹明B为探针分子,考察金/氧化石墨烯/金复合材料的表面增强拉曼散射活性.结果表明,由于氧化石墨烯的化学增强和金纳米粒子的电磁场增强的协同作用,在该三维复合材料上获得了很强的罗丹明B拉曼信号.所设计的三维金/氧化石墨烯/金复合材料在生物分析、环境监测、疾病防控、食品安全等领域具有潜在的应用价值. 相似文献
2.
表面增强拉曼散射(SERS)光谱技术是一种高灵敏度的检测技术,已在社会发展的多个领域显示出潜在的应用前景。SERS活性基底的大面积、低成本、可控制备是表面增强拉曼散射光谱学研究领域的热点之一。利用溶液法将直径小于5 nm的金纳米团簇旋涂成膜,调控退火温度和时间,将金纳米团簇融合组装成随机分布的金纳米岛。由于融合组装过程在150~210 ℃范围缓慢,控制条件可实现具有高密度增强“热点”的SERS基底,方法简单、成本低廉、面积大、均匀性高。我们利用该方法可重复性获得了性能优良的SERS基底。该基底对表面吸附的单分子层,具有强烈的表面增强拉曼散射光谱响应,150~210 ℃退火样品的宏观增强因子106~107量级。研究表明:相同条件下150~180 ℃退火,金纳米团簇首先融合成直径10~20 nm细小金纳米岛;退火温度190~210 ℃时,形成10~20 nm细小金纳米岛与50~70 nm金纳米岛混合并存的现象。拉曼光谱表征显示:大、小金纳米岛混合并存样品的宏观增强因子高于细小金纳米岛组成的样品。经220 ℃退火后,金纳米团簇完全融合成直径50~100 nm的金纳米岛,岛间距也随之增大,导致纳米岛之间的电磁场强度呈指数衰减,220 ℃退火的样品具有较低的增强因子。本论文揭示了金纳米团簇的缓慢自组装机制,分析了金纳米岛的形貌与表面增强拉曼散射光谱的关系,为该基底的应用研究奠定基础。 相似文献
3.
4.
5.
金属纳米颗粒与金属薄膜的复合结构由于其局域表面等离子体和传播表面等离子体间的强共振耦合作用,可作为表面增强拉曼散射(SERS)基底,显著增强吸附分子的拉曼信号.本文提出了一种聚甲基丙烯酸甲酯(PMMA)间隔的90 nm金纳米立方体与50 nm金膜复合结构的SERS基底,通过有限元方法数值模拟,得到PMMA的最优化厚度为15 nm.实验制备了PMMA间隔层厚度为14 nm的复合结构,利用罗丹明6G (R6G)为拉曼探针分子, 633 nm的氦氖激光器作为激发光源,研究了复合结构和单一金纳米立方体的SERS效应,发现复合结构可以使探针分子产生比单一结构更强的拉曼信号.在此基础上,研究了不同浓度金纳米立方体水溶液条件下复合结构中R6G的拉曼光谱.结果表明,当金纳米立方体水溶液浓度为5.625μg/mL的条件下复合结构中R6G的拉曼信号最强,且可测量R6G的最低浓度达10~(–11) mol/L. 相似文献
6.
表面增强拉曼散射(surface-enhanced Raman scattering, SERS)在分析检测领域中具有重要地位,然而随着其不断发展,贵金属SERS基底在实际应用中受到限制.基于C, Ti, Zn, Cu, Mo, W等非贵金属纳米材料的SERS基底相比于贵金属基底具有更优异的经济性、稳定性、选择性以及生物相容性等,逐渐被广泛研究和应用.并且由于其化学增强占主导的特性,非贵金属基底为SERS化学增强机理的研究提供了理想的平台.因此,本文对近年来非贵金属SERS基底的发展进行了综述,讨论了不同材料的增强机理及SERS性能,并探讨了其未来的研究与发展方向. 相似文献
7.
8.
表面增强拉曼(SERS)作为一种分析手段,具有高灵敏度、高选择性、高重复性、非破坏性等优点,在过去的几十年中,被广泛应用在成分检测、环境科学、生物医药及传感器等领域。其中以金、银等贵金属纳米颗粒薄膜在表面增强拉曼(SERS)活性基底方面得到了更为广泛的应用。SERS技术一个关键的因素是如何制设计并备具有大面积、高增强能力及高重复性、可循环使用的SERS基底。通常,贵金属纳米颗粒规则阵列结构的单元颗粒电磁增强特性及其颗粒间的电磁耦合增强特性的综合作用可大力提升SERS基底的探测性能。然而,利用传统微纳米加工方法如光刻、电子束光刻等方法制备得到的贵金属纳米阵列结构的表面粗糙度不够理想。结合光刻与化学置换方法制备金纳米颗粒四方点阵列孔洞结构,并研究其作为SERS基底的电磁增强特性。具体研究利用光刻法在硅衬底上制备了规则排列的四方点阵列孔洞结构,用磁控溅射在其表面镀上金属铁膜;接着在衬底上旋涂浓度为1.893 8 mol·L-1的氯金酸液膜,在孔洞内铁和氯金酸发生置换反应,进而孔洞生成金纳米颗粒,最终得到金纳米颗粒四方点阵SERS活性基底。采用罗丹明6G(R6G)分子作为探测分子测试不同金纳米颗粒阵列结构基底的SERS谱。实验结果表明,随着化学置换反应时间的延长,金纳米颗粒排列更加紧凑有序,SERS谱增强性能更好。 相似文献
9.
表面增强拉曼散射(SERS)是一种广泛应用于化学反应检测、医学诊断和食品分析等领域的高灵敏度光谱技术.基底结构的构建对提高探针分子的SERS信号有非常重要的影响.本文利用聚甲基丙烯酸甲酯(PMMA)包裹银纳米颗粒制备了一种三维金字塔立体复合SERS基底,实现了对罗丹明6G (R6G)分子的高灵敏度检测.通过调节银纳米颗粒在PMMA丙酮溶液中的分散密度,实现了光在金字塔谷内的有效振荡,既保证了三维结构高密度的"热点"效应,又避免了由于金属-分子相互作用引起的吸附探针分子变形导致的信号失真等问题.同时,有效防止了银纳米颗粒的氧化,为探针分子提供更大的电磁增强作用范围,使增强的拉曼信号产生稳定的输出.此研究结果不仅提供了一种高性能、可重复使用的SERS基底的有效策略,也会对未来设计改进三维结构的SERS基底有指导意义. 相似文献
10.
采用柠檬酸三钠还原氯金酸和离子交换法制备金纳米粒子掺杂DNA-CTMA材料,利用钯催化反应合成9,9-二乙基-2,7-二-(4-吡啶)芴荧光染料(DPFP),将DPFP与DNA-CTMA混合后,旋凃制备金纳米粒子掺杂的DNA-CTMA-DPFP薄膜样品。通过吸收光谱、荧光光谱和拉曼光谱的测量,研究了薄膜样品的光学特性和表面增强拉曼散射(SERS)特性。实验结果表明,薄膜样品在300~360 nm的吸收主要来自DPFP,在500~700 nm的吸收来自样品中金纳米粒子的局域表面等离子共振;样品在370,386,408 nm处的荧光峰分别对应DPFP的S10-S00、S10-S01和S10-S02能级的电子振动跃迁;在785 nm激光激发下,薄膜样品的拉曼散射主要来自DPFP分子,随着金纳米粒子掺杂比的增大,DPFP分子的拉曼散射峰强度逐渐增强。因此,金纳米粒子掺杂DNA-CTMA薄膜适合作为多种染料分子的SERS基底。 相似文献
11.
采用聚碳酸酯模板和电化学沉积法制备基于金纳米棒的Raman场增强衬底, 制备的金纳米棒直径大约36 nm, 长约1 μm, 测试结果显示其共振吸收峰的位置约为540 nm. 比较了谐振和非谐振条件下的场增强情况, 并确定了场增益系数, 结果显示谐振激光激发下的增益比非谐振情况下提高了7.36倍. 本研究相对于前人的工作取得了如下进展: 一是讨论了谐振模式与非谐振模式下的金纳米棒的场增益系数, 利用谐振波长的激光激发金纳米棒, 进一步提高了场增益; 二是消除了聚碳酸酯模板分子的荧光背底, 使其在表面增强 Raman 散射方面的应用进一步变得可行.
关键词:
金纳米棒
表面增强Raman散射
聚碳酸酯模板 相似文献
12.
表面增强拉曼散射(SERS)技术克服了拉曼光谱灵敏度低的缺点,可以获得常规拉曼光谱不易得到的分子结构信息,成为分子甚至单一分子痕量检测的一个重要手段,在生命科学、分析化学等领域得到了广泛的应用。SERS基底是SERS检测中的核心部件,只有少量特殊处理的贵金属才具有较强SERS效应,同时这些传统SERS基底一般都是一次性使用,这给实际使用造成资源的浪费。在简要介绍SERS光谱发展的基础上,重点介绍了近期在可循环SERS基底的制备和应用作一述评,并对可循环SERS基底的研究和发展做了展望。 相似文献
13.
采用种子生长法制备了不同长径比的金纳米棒,并通过金硫键的结合在其表面包覆半胱氨酸分子。利用紫外-可见吸收光谱仪,扫描电子显微镜以及拉曼光谱仪等对样品进行分析和表征。实验结果表明金纳米棒产率较高,且一致性较好。表面修饰后的金纳米棒的纵向吸收峰发生蓝移,表明半胱氨酸分子与金纳米棒的结合有助于溶液分散性的提升。以结晶紫为探针分子,随着金纳米棒长径比的增加其拉曼增强效果变强。进一步分析发现,修饰后的金纳米棒的表面增强拉曼光谱的增强效果并未受到影响。通过金纳米棒与半胱氨酸分子牢固的结合,一方面可以提高金纳米棒溶液的分散性与稳定性;另一方面半胱氨酸分子可为金纳米棒修饰其它有机官能团提供了一个牢固的桥梁,有效地拓展了金纳米棒的应用方向。 相似文献
14.
现有的柔性波导器件存在加工制备难、机械柔韧性有限、可靠性程度低等难题。基于中性面理论,以聚酰亚胺(PI)薄膜为衬底,设计并制作了具有三明治叠层结构的柔性多模聚合物波导,通过多层中性面的构筑赋予柔性波导优异的结构可靠性和机械柔韧性。所制备的柔性聚合物波导具有低传输损耗(0.16 dB/cm@850 nm)和低通道串扰(<-40 dB)的特性。通过微机械设计使在机械变形过程中施加在波导芯层上的应变最小化,波导表现出优良的机械弯曲性能,其最小弯曲半径低至3 mm,且以1 mm弯曲半径弯曲1000次后,其传输损耗无明显增加。可靠性测试实验结果表明,柔性波导具有优异的热稳定性、耐老化性能以及可加工性能,经过湿度循环、温度循环以及无铅回流焊处理后,波导的传输性能并未发生明显劣化。该研究为具有优异机械柔性和环境可靠性的柔性聚合物波导的规模化生产和应用提供了一定的理论与技术指引。 相似文献
15.
采用一种简易的化学置换反应方法在泡沫镍基底上生长花针状的金纳米结构,并将其作为表面增强拉曼散射(SERS)基底,主要研究置换时间对SERS基底性能的影响。采用COMSOL Multiphysics仿真软件对金纳米粒子高度分别为100,150,175,200 nm的基底进行电磁增强仿真,得到最大电场强度分别为20.112,29.060,24.766,21.382 V/m,计算得到增强因子分别为1.64×105、7.13×105、3.76×105和2.09×105。使用罗丹明6G(R6G)溶液作为探针分子,对不同置换时间下的泡沫镍镀金基底进行拉曼表征、检测极限测试以及拉曼mapping测试。测试结果表明,置换时间为10 min的基底增强效果是最佳的,对R6G分子的检测浓度可以达到10-8 mol·L-1,在613,774,1364 cm-1这三个R6G分子的拉曼位移特征峰处的相对标准偏差值分别为11.3%、10.9%和11.9%,说明基底... 相似文献
16.
《光散射学报》2015,(2):134-138
本文介绍一种集成微通道的表面增强拉曼基底。采用湿法刻蚀方法在硅片上形成微通道,然后电子束蒸发沉积金薄膜,最后在300℃温度下高真空退火30分钟,使微通道内形成均匀且高密度的金纳米颗粒结构。用场发射扫描电子显微镜(SEM)对基底表面进行表征发现:金膜厚度对基底的表面形貌影响很大,5nm厚的金膜在退火后形成了均匀的高密度的纳米颗粒结构,而10nm厚的金膜退火后没有得到高密度纳米颗粒结构。用10-6 M的罗丹明6G作为探测分子进行拉曼实验测试结果同样表明:5nm厚的金膜退火后形成高密度的金纳米颗粒显著地增强了R6G拉曼信号。同时,对比了宽度分别为25、60、110!m三种尺寸的微通道的基底表面形貌和拉曼增强效应,微通道尺寸对表面形貌和拉曼增强效应影响均很小。 相似文献
17.
18.
采用真空蒸镀法与湿法转移法制备出银/石墨烯/银(AG/GE/AG)三层结构,再通过一次高温退火,获得可重复利用的AG/GE/AG复合结构基底。利用COMSOL Multiphysics仿真软件计算了电场分布和理论增强因子。拉曼测试实验表明:对基底进行拉曼mapping测试,石墨烯D、G和二维峰的相对标准偏差(RSD)值分别为26.0%、17.8%和23.6%,说明基底均匀性较好。对罗丹明6G(R6G)和结晶紫(CV)的检测极限低至10-7 mol/L。以浓度为10-5 mol/L的R6G作为探针分子,硼氢化钠溶液作为清洗剂,研究了AG/GE/AG基底的重复性实验。以613 cm-1和773 cm-1处拉曼峰为例,清洗后,拉曼强度分别维持在71.08%和71.60%。 相似文献
19.
以琼脂糖凝胶为模板,将预先制备好的胶体金颗粒负载在琼脂糖凝胶的网状结构中,制备了琼脂糖凝胶/纳米金复合膜结构,采用透射电子显微镜、扫描电子显微镜、紫外-可见-近红外光谱仪对复合膜的结构和光学性质进行了表征,实验数据表明纳米金颗粒均匀的分散在琼脂糖凝胶膜上,并且呈现出优异的光学吸收特性。基于琼脂糖凝胶的溶胀收缩特性和纳米金颗粒可调的表面等离子体共振吸收特性,将琼脂糖凝胶/纳米金复合膜作为表面增强拉曼(SERS)基底材料,研究了其对拉曼信号分子尼罗蓝A(NBA)的SERS检测效果。结果表明,琼脂糖凝胶的多孔网状结构为纳米金颗粒的富集提供了良好的载体,随着琼脂糖凝胶在空气中失水收缩,纳米金颗粒间距离逐渐缩短,产生动态的热点效应,对拉曼信号分子具有良好的增强效应。 相似文献
20.
表面增强拉曼散射(SERS)技术具有高灵敏度、高分辨率、无损检测及不需要预处理等优点,已成为一种可以实现定性定量分子检测的有力工具,使目标分析物信号放大的痕量检测技术,甚至能够在分子水平上提供丰富的结构信息。虽然SERS增强机理一直存在争议,但目前被广泛接受的增强机理包括物理增强(电磁场增强)和化学增强(主要为电荷转移的贡献)。随着近年来金属、非金属等诸多材料应用于SERS领域,诸多学者对于影响SERS基底的增强因素产生广泛兴趣,对于SERS增强机理的研究具有重要意义。综述中主要从SERS电磁增强机理、化学增强机理及两者的协同机理三个方面对SERS增强机理进行阐述,分析哪些因素影响基底增强效应,为SERS增强机理的分析提供一些参考。同时提出不同基底结构在增强机理分析过程中面临的问题:(1)在电磁增强机理中,单一贵金属基底因其“热点”分布不均匀、不可控因素导致SERS灵敏度和重复性差等因素,对SERS电磁增强机理影响效果较大;(2)在化学增强机理中,单一半导体材料由于价格实惠、材料性能较稳定、表面易于改性等优点被广泛应用于SERS基底、由于增强能力较低等因素、对SERS化学增强效果不明显... 相似文献