首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shiying Cao 《中国物理 B》2022,31(7):74207-074207
Femtosecond optical frequency combs correlate the microwave and optical frequencies accurately and coherently. Therefore, any optical frequency in visible to near-infrared region can be directly traced to a microwave frequency. As a result, the length unit "meter" is directly related to the time unit "second". This paper validates the capability of the national wavelength standards based on a home-made Er-doped fiber femtosecond optical frequency comb to measure the laser frequencies ranging from visible to near-infrared region. Optical frequency conversion in the femtosecond optical frequency comb is achieved by combining spectral broadening in a highly nonlinear fiber with a single-point frequency-doubling scheme. The signal-to-noise ratio of the beat notes between the femtosecond optical frequency comb and the lasers at 633, 698, 729, 780, 1064, and 1542 nm is better than 30 dB. The frequency instability of the above lasers is evaluated by using a hydrogen clock signal with a instability of better than 1×10-13 at 1-s averaging time. The measurement is further validated by measuring the absolute optical frequency of an iodine-stabilized 532-nm laser and an acetylene-stabilized 1542-nm laser. The results are within the uncertainty range of the international recommended values. Our results demonstrate the accurate optical frequency measurement of lasers at different frequencies using the femtosecond optical frequency comb, which is not only important for the precise and accurate traceability and calibration of the laser frequencies, but also provides technical support for establishing the national wavelength standards based on the femtosecond optical frequency comb.  相似文献   

2.
A scheme for the photonic generation of frequency-tunable millimeter wave and terahertz wave signals based on a highly flat optical frequency comb is proposed and demonstrated experimentally.The frequency comb is generated using two cascaded phase modulators(PMs)and an electro-absorption modulator(EAM).The frequency comb covers a 440-GHz frequency range,with 40-GHz comb spacing and less than 2-dB amplitude variation.By filtering out two of the comb lines with 50 dB out of the band suppression ratio,high frequency-purity and low phase noise millimeter wave or terahertz wave signals are successfully generated,with frequencies ranging from 40 to 440 GHz.  相似文献   

3.
麻艳娜  黄添添  王文睿  宋开臣 《物理学报》2018,67(23):238401-238401
随着无线通信的速率提升和微蜂窝趋势,光载微波技术已经成为重要的发展趋势,而光生多载波系统是光载微波的最重要的技术之一.本文提出了一种基于双环混频光电振荡器(OEO)的可调谐光载微波频率梳产生方案,可同时实现多频段微波信号产生,从而高效低成本地为无线节点提供光生微波载波.方案采用混频双环OEO系统,通过工作在增益开关状态的直调激光器,利用其非线性动态特性产生多频率光载微波频率梳信号,并采用双路微波滤波器分别滤出两个相邻频率的微波信号,并利用二者的差频反馈注入直调激光器构成光电谐振.利用偏振双环结构抑制长谐振腔引起的边模问题,提高了输出信号的噪声特性.经过实验分析,得到了低相噪的多路微波信号,并最终实现了间隔797.4 MHz的稳定的微波频率梳信号,一阶载波相位噪声低于-101.7 dBc/Hz@10 kHz,-115.2 dBc/Hz@50 kHz.因此该方案产生的光载微波频率梳信号具有低噪声的优点,适用于光载微波通信系统.  相似文献   

4.
We theoretically and numerically study an approach for optical frequency comb (OFC) generation, by utilizing recirculating frequency shifting (RFS) loop based on three parallel Mach–Zehnder modulators (MZMs). Our results show that three parallel MZMs can generate a single-side-band (SSB) signal with 36 dB optical carrier suppression (OCS) ratio. Furthermore, the 60-tone OFC signal with 30 dB side-mode suppression ratio (SMSR) and 4 dB maximum power fluctuation is achieved, and 20 of the OFC signal possess the power fluctuation of less than 1 dB. Our approach provides a novel way of generating OFC with excellent SMSR and good power fluctuation.  相似文献   

5.
Diddams SA  Ma LS  Ye J  Hall JL 《Optics letters》1999,24(23):1747-1749
We introduce a novel broadband optical frequency comb generator consisting of a parametric oscillator with an intracavity electro-optic phase modulator. The parametric oscillator is pumped by 532-nm light and produces near-degenerate signal and idler fields. The modulator generates a comb structure about both the signal and the idler. Coupling between the two families of modes results in a dispersion-limited comb that spans 20 nm (5.3 THz). A signal-to-noise ratio of >30 dB in a 300-kHz bandwidth is observed in the beat frequency between individual comb elements and a reference laser.  相似文献   

6.
We demonstrate a great simplification in the long-standing problem of measuring optical frequencies in terms of the cesium primary standard. An air-silica microstructure optical fiber broadens the frequency comb of a femtosecond laser to span the optical octave from 1064 to 532 nm, enabling us to measure the 282 THz frequency of an iodine-stabilized Nd:YAG laser directly in terms of the microwave frequency that controls the comb spacing. Additional measurements of established optical frequencies at 633 and 778 nm using the same femtosecond comb confirm the accepted uncertainties for these standards.  相似文献   

7.
A optical filter based on Sagnac interferometer was proposed to be acted as a comb filter with equal frequency spacing and good signal to noise ratio (SNR), which was composed of an 8.14 m stress-induced Hi-Bi (high-birefringence) PM (polarization-maintaining) fiber. Using this multi-wavelength Sagnac comb filter and a gain flattening Sagnac filter that made the output spectra flattening at different pump powers, a 25-channel multi-wavelength all-fiber source were successfully generated with channel spacing of 0.8 nm with respect to the center wavelength at 1550 nm and flattened gain about ±1 dB peak deviation. The channel spacing can be further reduced to 0.4 nm to produce a DWDM (dense wavelength division multiplexing) source, simply by increasing the Hi-Bi fiber to be 16.28 m. It can be used in many applications such as WDM (wavelength division multiplexing), optical amplifiers with a high SNR, narrow band filters and optical sensors.  相似文献   

8.
孟飞  曹士英  蔡岳  王贵重  曹建平  李天初  方占军 《物理学报》2011,60(10):100601-100601
实验利用商品光纤飞秒激光器,自行构建了一套完整的光学频率梳系统,并获得了约30 dB信噪比的系统频移(fceo)信号.实现了光频梳重复频率(frep)信号及系统频移(fceo)信号的高稳定度锁定,并通过实验验证了光频梳锁定的跟踪精度.基于此稳定光频梳完成了对1064 nm碘稳频Nd:YAG固体激光器的绝对频率测量.实验结果表明,frep的跟踪精度在100 s取样时间时优于3.7×10-14,测量得到的1064 nm激光器绝对频率为:281630111757362 Hz.这一测量结果与国际计量委员会(CIPM)给出的国际推荐值符合到不确定度之内. 关键词: 光纤光频梳 稳频 锁相技术 光学频率计量  相似文献   

9.
A laser frequency comb allows the conversion of the very rapid oscillations of visible light of some 100’s of THz down to frequencies that can be handled with conventional electronics. This capability has enabled the most precise laser spectroscopy experiments yet that allowed to test quantum electrodynamics, to determine fundamental constants and to search for possible slow changes of these constants. Using an optical frequency reference in combination with a laser frequency comb has made it possible to construct all optical atomic clocks, that are now outperforming even the best cesium atomic clocks. In future direct frequency comb spectroscopy might enable high resolution laser spectroscopy in the extreme ultraviolet for the first time. Frequency combs are also used to calibrate astronomical spectrographs and might reach an accuracy that is sufficient to observe the expansion of the universe in real time.  相似文献   

10.
高动态范围声光接收机   总被引:1,自引:0,他引:1  
何大伟  李也凡 《光学学报》1998,18(12):711-1715
介绍了一种高动态范围声光接收机,这种接收机具备实现宽带射频信号幅度,频率和相位的信道比探测能力,该接收机在0.6328μm激光器的工作条件下(1.0mW),声光布拉格盒在50mW射频信号区动下,在140MHz的中心频率上20MHdisplay status  相似文献   

11.
We have used the comb of optical frequencies emitted by a mode-locked laser as a ruler to measure differences of as much as 20 THz between laser frequencies. This is to our knowledge the largest gap measured with a frequency comb, with high potential for further improvements. To check the accuracy of this approach we show that the modes are distributed uniformly in frequency space within the experimental limit of 3.0 parts in 10(17) . By comparison with an optical frequency comb generator we have verified that the mode separation equals the pulse repetition rate within the experimental limit of 6.0 parts in 10(16).  相似文献   

12.
We proposed a scheme based on two cascaded lithium niobate intensity modulators to generate an optical frequency comb with very high flatness. Single-drive multi-RF waveforms are used for driving the first intensity modulator, and 9 lines within 1 dB power variation can be obtained. When cascading with another intensity modulator, by specially adjusting the DC bias and the drive amplitudes of the RF signals of the two intensity modulators, 27 or 45 comb lines with a spectral power variation about 1 dB are obtained. The scheme is relatively simple and adjustable, and the frequency interval of the OFC varies with microwave frequency applied on modulators.  相似文献   

13.
The laser source is an important element whose properties have influence on the output performance of single sideband(SSB) optical comb based on recirculating frequency shifter(RFS).The theoretical and experimental results show that the tone-to-noise ratio(TNR),flatness,and stability of optical comb improve using laser source with narrower linewidth.In order to obtain the optical comb with TNR larger than 42 dB and degree of stability(DOS) smaller than-6.7 dB,external cavity laser(ECL) with linewidth from 100 kHz to 1 MHz is a trade-off choice.  相似文献   

14.
We implement a simple optical clock based on the F2(2) [P(7), v3] optical transition in methane. A single femtosecond laser's frequency comb undergoes difference frequency generation to provide an IR comb at 3.39 microm with a null carrier-envelope offset. This IR comb provides a phase-coherent link between the 88-THz optical reference and the rf repetition rate. Comparison of the repetition rate signal with a second femtosecond comb stabilized to molecular iodine shows an instability of 1.2 x 10(-13) at 1 s, limited by microwave detection of the repetition rates. The single-sideband phase noise of the microwave signal, normalized to a carrier frequency of 1 GHz, is below -93 dBc/Hz at 1-Hz offset.  相似文献   

15.
Cavity-enhanced direct frequency comb spectroscopy combines broad spectral bandwidth, high spectral resolution, precise frequency calibration, and ultrahigh detection sensitivity, all in one experimental platform based on an optical frequency comb interacting with a high-finesse optical cavity. Precise control of the optical frequency comb allows highly efficient, coherent coupling of individual comb components with corresponding resonant modes of the high-finesse cavity. The long cavity lifetime dramatically enhances the effective interaction between the light field and intracavity matter, increasing the sensitivity for measurement of optical losses by a factor that is on the order of the cavity finesse. The use of low-dispersion mirrors permits almost the entire spectral bandwidth of the frequency comb to be employed for detection, covering a range of ~?10% of the actual optical frequency. The light transmitted from the cavity is spectrally resolved to provide a multitude of detection channels with spectral resolutions ranging from several gigahertz to hundreds of kilohertz. In this review we will discuss the principle of cavity-enhanced direct frequency comb spectroscopy and the various implementations of such systems. In particular, we discuss several types of UV, optical, and IR frequency comb sources and optical cavity designs that can be used for specific spectroscopic applications. We present several cavity-comb coupling methods to take advantage of the broad spectral bandwidth and narrow spectral components of a frequency comb. Finally, we present a series of experimental measurements on trace gas detections, human breath analysis, and characterization of cold molecular beams. These results demonstrate clearly that the wide bandwidth and ultrasensitive nature of the femtosecond enhancement cavity enables powerful real-time detection and identification of many molecular species in a massively parallel fashion.  相似文献   

16.
The properties of a Brillouin-Raman comb fiber laser are compared for two different configurations: co-propagating and counter-propagating Raman pump. The optical spectrum is compared for changing the Raman pump power and the power or the wavelength of seed laser. A Brillouin-Raman comb with 400 linewidth lasers in a flat-amplitude bandwidth of 32 nm between 1538 and 1570 nm, with an average optical power 20 dB above the nearby frequencies was generated. The lasers in the comb had an OSNR of 20 dB and a wavelength spacing of 0.08 nm. The results for the counter-propagating configuration were observed to have better quality.  相似文献   

17.
We demonstrate the first ultra-stable microwave generation based on a 1.5-μm diode-pumped solid-state laser (DPSSL) frequency comb. Our system relies on optical-to-microwave frequency division from a planar-waveguide external cavity laser referenced to an ultra-stable Fabry–Perot cavity. The evaluation of the microwave signal at ~10 GHz uses the transportable ultra-low-instability signal source ULISS®, which employs a cryo-cooled sapphire oscillator. With the DPSSL comb, we measured ?125 dBc/Hz phase noise at 1 kHz offset frequency, likely limited by the photo-detection shot-noise or by the noise floor of the reference cryo-cooled sapphire oscillator. For comparison, we also generated low-noise microwave using a commercial Er:fiber comb stabilized in similar conditions and observed >20 dB lower phase noise in the microwave generated from the DPSSL comb. Our results confirm the high potential of the DPSSL technology for low-noise comb applications.  相似文献   

18.
Optical frequency combs from mode‐locked femtosecond lasers have link optical and microwave frequencies in a single step, and they provide the long missing clockwork for optical atomic clocks. By extending the limits of time and frequency metrology, they enable new tests of fundamental physics laws. Precise comparisons of optical resonance frequencies of atomic hydrogen and other atoms with the microwave frequency of a cesium atomic clock are establishing sensitive limits for possible slow variations of fundamental constants. Optical high harmonic generation is extending frequency comb techniques into the extreme ultraviolet, opening a new spectral territory to precision laser spectroscopy. Frequency comb techniques are also providing a key to attosecond science by offering control of the electric field of ultrafast laser pulses. In our laboratories at Stanford and Garching, the development of new instruments and techniques for precision laser spectroscopy has long been motivated by the goal of ever higher resolution and measurement accuracy in optical spectroscopy of the simple hydrogen atom which permits unique confrontations between experiment and fundamental theory. This lecture recounts these adventures and the evolution of laser frequency comb techniques from my personal perspective.  相似文献   

19.
We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-??m spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558?nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A?linewidth of ??150?kHz and a fractional frequency instability of 4.2×10?13 at 1?s are obtained for an optical comb line at 1558?nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558?nm. The fractional frequency stability of 8×10?14 at 1?s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.  相似文献   

20.
Optical frequency comb generation by using a novel optoelectronic oscillator (OEO) is proposed and demonstrated with the emphasis placed on self-oscillating operation. In the OEO, a wideband LiNbO3 phase modulator is driven with a large-amplitude radio-frequency (RF) feedback signal to generate a deeply phase-modulated light wave; accordingly, an optical frequency comb with a bandwidth greater than the RF signal is generated by self-oscillation. Although it generates multifrequency components, the OEO exhibits characteristics of a single-mode oscillator. Its operation is stable and self-starting. An optical frequency comb with a 120 GHz bandwidth and 9.95 GHz frequency spacing was successfully generated by self-oscillation at a single frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号