首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多环芳烃(PAHs)作为一种芳香族化合物,普遍存在于人们的生产生活中,它具有强烈的致癌性,威胁着人们的生命和健康。所以,对多环芳烃实施简洁、高效、精确的检测方法很有必要。根据常见的多环芳烃类型,选取多环芳烃萘(NAP)、芴(FLU)、苊(ANA)的固体粉末状物质作为实验样本。取NAP, FLU和ANA粉末各1 g溶于少量的甲醇(光谱级)溶液,然后转移到100 mL的去离子水溶液中,配置PAHs标准溶液。采用FS920荧光光谱仪,实验中为避免荧光光谱仪本身产生的瑞利散射影响,设置起始的发射波长滞后激发波长10 nm。以标准溶液为基准,获取ANA, NAP和FLU单质的水溶液的荧光光谱图。在标准溶液的基础上,配置0.1 mg·mL~(-1)的单质水溶液,然后将ANA与NAP, FLU分别取不同的体积相互混合形成两种混合溶液,各自形成16种不同浓度比例的混合溶液,再取不同体积的三种溶液相互混合,摇匀震荡,最后一共形成48种不同体积比例的混合溶液。最后将实验数据输入Matlab中得到苊萘、苊芴、苊芴萘混合溶液的荧光光谱,发现混合溶液的激发波长在260~320 nm、发射波长300~380 nm波长范围内,最佳发射波长的位置相似,荧光峰对应的激发波长有大部分重叠。针对荧光光谱不能直接辨别混合物的种类的不足,将基于遗传算法(GA)优化的支持向量机(SVM)应用于多环芳烃混合物种类的检测中,将数据随机打乱,并且将遗传算法的终止进化代数设为200、训练数据和预测数据分别为36个和12个,得到训练结果的准确率为95.42%。将实验结果对比分析普通支持向量机和BP神经网络,结果表明,基于遗传算法优化的支持向量机分类误差较小,能比较准确的分辨混合物的种类。  相似文献   

2.
三维荧光光谱法在研究多环芳烃(PAHs)类物质的荧光信息时起到了重要作用。多环芳烃类物质具有致癌性,难降解性,多由尾气排放,垃圾焚烧产生,危害着人类健康及环境,因此人们不断探索对多环芳烃检测的方法。实验选取多环芳烃中的苊和萘作为检测物质,利用FLS920荧光光谱仪,为避免荧光光谱仪本身产生的瑞利散射影响,设置起始的发射波长滞后激发波长40 nm,设置扫描的激发波长(λex)范围为:200~370 nm,发射波长(λem)范围为:240~390 nm,对多环芳烃进行荧光扫描获取荧光数据,采用三维荧光光谱技术结合平行因子算法对混合溶液中的苊和萘进行定性定量分析。实验选用的苊和萘均购于阿拉丁试剂官网,配制浓度为10 mg·L-1的一级储备液,再将一级储备液稀释,得到苊和萘浓度为0.5,1,1.5,2,2.5,3,3.5,4和4.5 mg·L-1的二级储备液,并将苊和萘进行混合。在进行光谱分析前需要对苊和萘的光谱进行预处理,采用空白扣除法扣除拉曼散射的影响,并采用集合经验模态分解(EEMD)消除干扰噪声。实验测得苊存在两个波峰,位于λex=298 nm,λem=324/338 nm处,萘存在一个波峰,位于λex=280 nm,λem=322 nm处。选用的PARAFAC算法对组分数的的选择很敏感,因此采用核一致诊断法预估组分数,估计值2和3的核一致值都在60%以上,分别对混合样品进行了2因子和3因子的PARAFAC分解,将分解后得到的激发发射光谱数据和各组分浓度数据进行归一化处理,并绘制光谱图,与归一化处理后的真实的激发发射光谱图和各组分浓度图进行对比。同时将PARAFAC得到的混合样本的预测浓度,通过计算回收率(R)和均方根误差(RMSEP)来判定定量分析的准确度。选择2因子时,各混合样品中苊和萘拟合度为95.7%和96.7%,平均回收率分别为101.8%和98.9%,均方根误差分别为0.0187和0.0316;选择3因子时,各混合样品中苊和萘拟合度为95.3%和95.8%,平均回收率分别为97%和102.5%,均方根误差分别为0.033和0.116,由三项指标可得选用2因子进行定性定量分析的效果明显好于选用3因子。分析实验结果表明,基于三维荧光光谱法和PARAFAC算法对混合样品进行定性定量分析,能够有效的判定混合样品的类别,同时能够成功的预测出混合样品的浓度。  相似文献   

3.
以多环芳烃中的芴和苊为研究对象,提出一种将三维荧光光谱技术与Krawtchouk图像矩、广义回归神经网络相结合的定量分析的方法。利用FS920荧光光谱仪获取样品的三维荧光光谱数据,得到对应的三维光谱灰度图。直接计算三维光谱灰度图的Krawtchouk矩,将得到的Krawtchouk矩经平均影响值筛选后作为广义回归神经网络的输入,建立多环芳烃(PAHs)的定量模型。预测8组混合溶液的测试样本,芴和苊的平均相对误差分别为0.98%和2.15%。研究结果表明,Krawtchouk矩经过筛选后预测结果更为准确,该方法能够有效提取光谱的特征信息,简单、准确的预测PAHs的浓度。  相似文献   

4.
随着海洋中石油资源的不断开发,泄漏到海洋环境中的石油也日益增多,它不仅威胁着海洋生态环境,同时也严重影响着人们的身体健康。因此,快速、有效地检测出海洋环境中的石油类污染物对于保护海洋生态环境和人类健康具有重要意义。石油产品中含有大量的多环芳烃,其具有较强的荧光特性。因此,荧光光谱技术成为检测石油类污染物的重要手段之一。利用三维荧光光谱技术结合平行因子分析算法和模式识别方法,对石油类污染物进行表征和分类。首先,以海水和十二烷基硫酸钠(SDS)配制的胶束溶液作为溶剂,分别配制不同浓度的柴油、航空煤油、汽油和润滑油溶液,最终得到80个实验样本;然后,利用FLS920型荧光光谱仪采集实验样本的三维荧光光谱数据,并通过Delaunay三角形内插值法对所获得的三维荧光光谱数据进行去散射处理;其次,利用平行因子分析(PARAFAC)算法分解去散射后的三维荧光光谱数据,通过运用核一致诊断法和残差分析法对组分数进行估计;最后,为了建立稳健的分类模型,利用Kennard-Stone算法将80个实验样本分为60个训练集样本和20个测试集样本,运用K最近邻(KNN)算法、主成分判别分析(PCA-LDA)算法以及偏最小二乘判别分析(PLS-DA)算法分别建立分类模型,并利用灵敏度、特异性和准确率对分类效果进行评估。研究结果表明:三种分类模型对测试集中样本的识别准确率分别为85%, 90%和94%,其中, PLS-DA分类模型对测试集样本的识别准确率最高,具有最佳的分类效果。因此,在利用平行因子分析算法提取石油类污染物荧光光谱数据的基础上,结合模式识别方法可以很好的对不同种类油品进行分类研究。利用三维荧光光谱技术结合平行因子分析算法和模式识别方法快速、有效地检测油类污染物,为石油类污染物的快速检测提供了一种新的研究思路和重要参考。  相似文献   

5.
标准芳烃及其混合溶液的同步荧光光谱分析   总被引:1,自引:1,他引:0  
为了提供区分标准芳烃的实验依据,并为环境中芳烃污染检测提供参考.对10个标准芳烃样品(萘、芴、蒽、菲、荧蒽、苊、芘、1,2-苯并[A]蒽、苯并[k]荧蒽、苯并菲)及其混合溶液(蒽、萘、芴混合溶液,苊、荧蒽、菲混合溶液和芘、1,2-苯并[A]蒽、苯并[k]荧蒽、苯并菲混合溶液)的同步荧光特性进行了分析,获得10种标准芳烃标志峰最好时对应的Δλ值及其标志峰位.在此基础上,通过同步荧光光谱分析区分了三种标准芳烃混合溶液的组分,实验发现对蒽、萘、芴混合溶液,Δλ=3nm时最易区分三种组分;对苊、荧蒽、菲混合溶液,Δλ=3nm或Δλ=10nm均可区分三种组分,相对而言,Δλ=10nm更简便些;对芘、1,2-苯并[A]蒽、苯并[k]荧蒽、苯并菲混合溶液,Δλ=5nm时是最好的,但也仅能区分芘、1,2-苯并[A]蒽、苯并[k]荧蒽三种组分,苯并菲不确定.  相似文献   

6.
为准确进行浓度检测,用Savitzky-Golay(SG)多项式曲面平滑法去除三维荧光光谱数据的冗余信息,分别采用平行因子法(PARAFAC)算法和交替惩罚三线性分解(APTLD)算法对光谱数据进行分解。设计多环芳烃类污染物的检测实验,分析了芴(FLU)、苊(ANA)及两者混合溶液的荧光光谱特性。FLU溶液在λ_(ex)/λ_(em)=302/322 nm处存在一个明显的荧光峰,并且存在连续侧峰。ANA溶液存在两个荧光峰,分别为λ_(ex)/λ_(em)=290/322 nm和λ_(ex)/λ_(em)=290/336 nm。在激发波长200~370 nm扫描范围和发射波长240~390 nm扫描范围内,FLU和ANA荧光光谱重叠严重。结果表明,两种算法均能分辨出FLU和ANA,并取得了很高的回收率,但APTLD算法的检测效果更好。  相似文献   

7.
标准芳烃及其混合溶液的同步荧光光谱分析   总被引:1,自引:1,他引:0  
杨云  杨爱玲 《光子学报》2014,39(11):1976-1981
为了提供区分标准芳烃的实验依据,并为环境中芳烃污染检测提供参考.对10个标准芳烃样品(萘、芴、蒽、菲、荧蒽、苊、芘、1,2-苯并[A]蒽、苯并[k]荧蒽、苯并菲)及其混合溶液(蒽、萘、芴混合溶液,苊、荧蒽、菲混合溶液和芘、1,2-苯并[A]蒽、苯并[k]荧蒽、苯并菲混合溶液)的同步荧光特性进行了分析,获得10种标准芳烃标志峰最好时对应的Δλ值及其标志峰位.在此基础上,通过同步荧光光谱分析区分了三种标准芳烃混合溶液的组分,实验发现对蒽、萘、芴混合溶液,Δλ=3 nm时最易区分三种组分|对苊、荧蒽、菲混合溶液,Δλ=3 nm或Δλ=10 nm均可区分三种组分,相对而言,Δλ=10 nm更简便些|对芘、1,2-苯并[A]蒽、苯并[k]荧蒽、苯并菲混合溶液,Δλ=5 nm时是最好的,但也仅能区分芘、1,2-苯并[A]蒽、苯并[k]荧蒽三种组分,苯并菲不确定.  相似文献   

8.
石油污染的出现,导致生态环境遭到破坏。因此,油类识别方法的研究对于环境的保护具有重要意义。采用荧光光谱法获得石油光谱数据,并对其进行预处理,再通过降维方法来提取特征信息,最后利用模式识别算法进行分类,从而可以实现对油类的定性分析,因此研究一种更高效的数据降维方法以及识别分类算法极其重要。基于三维荧光光谱技术,利用稀疏主成分分析(SPCA)对FS920光谱仪测得的荧光光谱数据进行特征提取,再利用支持向量机(SVM)算法对提取的特征数据进行分类识别,获得了一种更加高效的油类识别方法。首先,利用海水和十二烷基硫酸钠(SDS)配制成浓度为0.1 mol·L-1的胶束溶液,将其作为溶剂配制柴油、航空煤油、汽油以及润滑油各20种不同浓度的溶液;然后,利用FS920光谱仪测得样本溶液的三维荧光光谱数据,对得到的光谱数据进行预处理;最后,对预处理后的数据分别利用SPCA和主成分分析(PCA)进行特征提取,再利用SVM和K最近邻(KNN)两种模式识别算法对特征向量进行分类,最终得到四种模型PCA-KNN,SPCA-KNN,PCA-SVM以及SPCA-SVM的分类结果。研究结果表明,由四种模型得到的分类准确率分别为85%,90%,90%和95%,其中,在同种分类算法中,利用SPCA进行特征提取得到的分类准确率均比PCA的准确率高5%,因此可知,SPCA的稀疏性具有突出主要成分的作用,在提取光谱特征时能够减小非必要成分的影响,并且载荷矩阵的稀疏化可以去除变量之间的冗余信息,优化降维特征信息,为后续分类提供更有效的数据特征信息;在同种特征提取算法下,利用SVM算法进行分类得到的分类准确率均比KNN算法得到的准确率高5%,表明SVM算法在分类中更具有优势。因此,本文利用三维荧光光谱技术结合SPCA和SVM算法,实现了对石油的准确识别与分类,为今后对石油污染物的高效检测提供了新思路。  相似文献   

9.
大量废弃的塑料制品给生态环境造成严重破坏,当务之急是要对塑料进行分类回收。传统的分类方法普遍存在成本高,效率低,操作复杂等问题,不能满足工业生产的需要。激光诱导击穿光谱技术由于具备简单灵活,快速灵敏等优点,在物质鉴别领域有广泛应用。采用激光诱导击穿光谱技术结合主成分分析(PCA)和支持向量机(SVM)算法对20种塑料进行分类识别研究。由于目前有关塑料分类识别速率的研究报道较少,该实验在保证识别准确率的前提下,进一步研究和分析实验过程耗费的时间,满足工业生产中快速分类的要求。每种塑料采集100组光谱数据,随机选取50组数据作为训练集建立模型,余下50组作为测试集测试模型的分类识别效果,所以训练集和测试集各有1 000组光谱数据。将训练集的数据不加处理地输入SVM中进行训练,并采用5折交叉验证建立最佳模型,此时测试集的识别准确率为99.90%,建模时间为1小时58分41.13秒,预测时间为11.96 s。由此可见,单纯使用SVM算法可以得到很高的准确率,但是需要耗费大量时间。为了提高实验效率,引入主成分分析算法,将原来的高维数据变换成低维数据,并用降维后的数据训练模型。针对不同的主成分个数,均采用随机训练十次再取平均值的方法获得相关数值。实验表明,当选取主成分个数为13时,得到相应的识别准确率为99.80%,而PCA处理时间为1.44 s,建模时间为12.16 s,预测时间仅为0.02 s。虽然PCA算法结合SVM算法在对20种塑料进行分类识别时准确率有轻微下降,但是大大减少了模型训练的时间,实验效率得到很大程度的提高。结果表明,结合两种算法辅助激光诱导击穿光谱可以对塑料进行快速准确的分类识别。  相似文献   

10.
利用时间分辨荧光光谱技术,研究了菲、荧蒽、芴、蒽、芘等五种多环芳烃的荧光时间分辨发射光谱特性。以289 nm受激拉曼光作为激发光源,研究了289 nm激发光作用下五种多环芳烃的延时特性和门宽特性。并以多环芳烃随延时时间的荧光峰强度衰减关系曲线,得到菲、荧蒽、芴、芘的荧光寿命分别为37.0, 32.7, 10.9, 147.0 ns。不同荧光物质具有特定的荧光光谱特性,多环芳烃时间分辨荧光光谱特性的研究可以为复杂水体中不同种类多环芳烃的诊断提供依据。  相似文献   

11.
李松  饶竹  郭晓辰 《光谱实验室》2012,29(4):2102-2108
采用5个浓度水平样品并通过7家实验室进行协同评定试验,验证了土壤中萘、苊、苊烯、芴、菲、蒽、荧蒽、芘、苯并(a)蒽、屈、苯并(b)荧蒽、苯并(r)荧蒽、苯并(a)芘、二苯并(a.h)蒽、苯并(g.h.i)苝、茚并(1.2.3-cd)芘等16种多环芳烃分析方法的稳定性与准确性。测量结果经一致性和离群值检查后,土壤中16种多环芳烃在5.00—1000ng/g浓度水平范围内,重复性标准差为5.78—14.8ng/g,再现性标准差为16.2—23.8ng/g,单个样品中的1-氟萘替代物质量监控指标回收率分别为72.7%—105%,检测方法准确、可靠。  相似文献   

12.
多环芳烃(PAHs)具有强致癌性,威胁人类身体健康。在复杂水质检测环境中,利用荧光光谱检测PAHs浓度时,由于测量光谱中存在瑞利散射影响,使得PAHs光谱信号包含明显的非平稳噪声,常用的多次采样求均值法容易使PAHs光谱存在明显的测量误差,导致PAHs检测精度下降。为此,提出了一种基于3D荧光光谱分析和多维偏最小二乘(N-PLS)的PAHs浓度优化检测方法,首先分析了菲、芴、苊与荧蒽4种PAHs溶液的光谱特性,通过拟合散射带数据点值消除光谱中的瑞利散射噪声,同时尽可能地保留原光谱信息。提取4种PAHs光谱的均值、方差和一维边际分布等特征参数,利用聚类分析方法对其光谱数据做样本分类,将相似光谱数据样本进行合并;然后根据校正集的光谱信号与不同PAHs浓度之间的关系,建立N-PLS模型,对各类PAHs的浓度进行预测分析,并且验证PAHs浓度与光谱数据荧光强度的关系;最后利用双线性分解对浓度残差进行修正,对含有各类PAHs的水溶液与实际水样进行浓度残差验证,分析了不同参数下PAHs的预测误差。实验结果表明,溶剂菲有2个明显的荧光峰值,激发与发射波长分别为285/245和315/345 nm;芴与荧蒽均存在6个明显的荧光特征峰值,分别为265/255,325/345,335/325,365/355,385/395和405/415 nm,且与其他PAHs的荧光峰值相距较远; 溶液苊在发射波长300~485 nm的范围内存在连续波峰,且对应激发波长在255~360 nm范围内;N-PLS方法对不同水质环境下的PAHs预测误差较小,其中菲与芴均方根误差均小于0.4 μg·L-1,相对误差小于6%,苊与荧蒽均方根误差均小于1.0 μg·L-1,相对误差均小于9%。对4种不同的PAHs在河流中的扩散趋势进行了仿真分析,确定出了其扩散程度,其中芴与菲扩散速率约为51 mg·L-1,苊与荧蒽扩散速率为21 mg·L-1,且扩散速率在一定范围内呈线性增长趋势,PAHs与其浓度之间符合朗伯比尔定律的线性关系; 通过不同迭代次数下N-PLS方法的均方根误差分析,得到了均方根误差精度最高时的迭代次数;对比了不同主因子数时N-PLS方法对PAHs预测的适应度与相关系数,结果表明当主因子数为3时,适应度可达96.5%,此时N-PLS预测模型效果最佳。相比其他检测方法,本文方法检测精度较高,回收率较好,具有较强的鲁棒性。  相似文献   

13.
菲及腐殖酸混合液荧光法定量分析研究   总被引:1,自引:0,他引:1  
多环芳烃作为普遍关注的优先监测污染物,在水环境中其含量很低,易受共存物腐殖酸的干扰。由于多环芳烃与腐殖酸的光谱重叠严重,很难用常规方法快速的定量检测。菲(PHE)作为多环芳烃中的模式化合物,对菲和腐殖酸(HA)的荧光光谱特性进行了研究,分析了腐殖酸共存下对菲定量检测的影响。采用平行因子算法分析混合液的三维荧光光谱,在激发波长为240~360 nm(5 nm为间隔)、发射波长为 260~575 nm(5 nm为间隔)下对该体系进行了分辨研究,并对菲和腐殖酸进行荧光光谱测量。实验结果表明,此方法可用于有干扰共存下多环芳烃化合物的直接快速定量检测。  相似文献   

14.
基于三维荧光光谱结合小波压缩与交替惩罚三线性分解(APTLD)对水中多环芳烃(PAHs)进行定性和定量分析,实验以萘(NAP)、芴(FLU)、苊(ANA)为测量样品。首先用FS920荧光光谱仪测量获得样品的三维荧光光谱数据,对数据进行激发和发射校正且去散射,得到真实光谱。为了解决三维荧光光谱数据的冗余信息,通过小波变换对实验光谱数据进行压缩,其压缩分数和数据恢复分数分别大于92%和95%。用APTLD对压缩后的光谱数据进行分析,体现了二阶优势,实验结果表明,在PAHs的荧光光谱严重重叠和有干扰物共存下,该方法仍能准确地测定,其回收率为94%~98%、预测均方根误差小于0.29 μg·L-1。  相似文献   

15.
基于三维荧光光谱结合交替惩罚四线性分解(APQLD)对痕量多环芳烃(PAHs)进行检测,实验以苊(ANA)和萘(NAP)为研究对象。首先利用小波变换对得到的三维荧光光谱数据进行压缩,以消除数据的冗余信息。分别在乙醇溶剂、甲醇溶剂以及超纯水条件下测定不同浓度的PAHs的激发-发射荧光光谱,并将其组合构建四维数据,利用APQLD对构建的四维光谱数据进行分析,并对比了PAHs在三种溶剂条件下各自的回收率。实验结果表明,用不同溶剂构建的四维数据能更准确地测定PAHs的浓度,其回收率更高;对比二阶校正以及其他四维校正算法,APQLD更能体现四维算法所具有的优越性;当因子数N=3时,ANA的回收率为96.5%~103.3%,预测均方根误差为0.04 μg·L-1;NAP的回收率为93.3%~110.0%,预测均方根误差为0.08 μg·L-1。  相似文献   

16.
以某清香型白酒为研究对象,将三维荧光光谱技术与平行因子分析方法(parallel factor analysis,PARAFAC)、BP神经网络结合,建立清香型白酒年份鉴别模型。首先,利用FLS920全功能型荧光光谱仪测量获得不同年份白酒的三维荧光光谱数据,对激发发射三维矩阵进行三线性分解,得到四个主成分对应的浓度得分和激发-发射光谱轮廓图。将这4个浓度得分作为BP神经网络的输入,建立10,20和30年份白酒的鉴别模型。随机选取每个年份的10个样本,共30个样本组成测试集,剩余的90个白酒样本组成训练集建立训练模型。据此对未知样品进行预测,其预测正确率分别为90%,100%和100%。同时将该方法与多维偏最小二乘判别分析法(multi-way partial least squares discriminant analysis, NPLS-DA)进行了比较。研究结果表明:平行因子结合神经网络的判别模型具有更强的预测能力,该方法能够有效提取年份白酒的特征光谱信息,同时又降低了神经网络输入变量的维数,取得较好的鉴别效果。  相似文献   

17.
针对室内复杂环境下火灾识别准确率会降低的问题,提出了一种改进的粒子群算法优化支持向量机参数进行火灾火焰识别的方法。首先在 颜色空间进行火焰图像分割,对获得的火焰图像进行预处理并提取相关特征量;其次采用PSO算法搜索SVM的最优核参数和惩罚因子,并在PSO算法中加入变异操作和非线性动态调整惯性权值的方法,加快了搜索SVM最优参数的精度和速度;然后将提取的火焰各个特征量作为训练样本输入SVM模型进行训练,并建立参数优化后的SVM分类器模型;最后将待测试样本输入SVM模型进行分类识别。算法的火灾识别准确率达到94.09%,分类效果明显优于其他分类算法。仿真结果表明,改进的PSO优化SVM算法提高了火焰识别的准确率和实时性,算法的自适应性更强,误判率更低。  相似文献   

18.
塑料具有成本低、质量好,可塑性强等优点被广泛用于生产生活等领域,但废弃塑料处置不当容易引发二次污染。回收再利用有望成为解决废弃塑料污染问题的关键手段,其前提是对废料的准确分选。传统分选手段耗费时间,效率低下,难以实现废弃塑料的快速、经济、有效分类。激光诱导荧光技术是一种快速灵敏的光谱检测技术。具有操作简便,检测效率高,样品使用量小等优点常被应用于水体、土壤中油类,多环芳烃等有机污染物的快速识别与定量分析。利用激光诱导荧光技术可以快速采集不同塑料的荧光光谱,结合相应的模式识别算法,可实现塑料材质的快速准确识别。实验采集了8种塑料(ABS,HDPE,PA66,PLA,PP,PET,PS,PVC)共358组激光诱导荧光光谱,依据特征峰信息构建358×10的光谱矩阵。利用主成份分析法削减原光谱矩阵中的线性相关量,提高数据精度。结果显示前3个主成分的累计方差贡献值达98.085%,足以表征原光谱矩阵的主要信息。将降维的主成分PC1, PC2, PC3作为输入进行光谱分类,其中同种塑料光谱聚合度高,元素构成不同的塑料如PA66,PLA,HDPE和PVC的光谱分离度较好,而元素构成相同的塑料如PET和PLA的光谱分离度较差。PCA算法并不能准确的对未知塑料进行识别。BP-神经网络具有收敛速度快,预测精度高等特点被广泛用于模式识别和分类研究。将经PCA算法得到的简化特征矩阵作为BP-神经网络算法的输入集,其中随机抽取256组数据作为BP-神经网络算法模型的训练集,剩余的102组数据作为模型检测集。BP神经网络的隐藏层设定值为1,激活函数选择双极性Sigmoid函数,输出层为8种塑料样品。识别结果显示,102组数据中只有一组HDPE光谱数据被错识为PS,其余101组数据全部正确识别。8种塑料荧光光谱的综合识别准确率达到99%。研究结果表明激光诱导荧光技术结合BP-神经网络算法可实现不同材质塑料的快速准确识别。为实现废弃塑料的自动化智能分选,降低回收成本,减少废弃塑料危害提供新的参考。  相似文献   

19.
针对室内复杂环境下火灾识别准确率会降低的问题,提出了一种改进的粒子群算法优化支持向量机参数进行火灾火焰识别的方法;首先在YCrCb颜色空间进行火焰图像分割,对获得的火焰图像进行预处理并提取相关特征量;其次采用PSO算法搜索SVM的最优核参数和惩罚因子,并在PSO算法中加入变异操作和非线性动态调整惯性权值的方法,加快了搜索SVM最优参数的精度和速度;然后将提取的火焰各个特征量作为训练样本输入SVM模型进行训练,并建立参数优化后的SVM分类器模型;最后将待测试样本输入SVM模型进行分类识别;算法的火灾识别准确率达到94.09%,分类效果明显优于其他分类算法;仿真结果表明,改进的PSO优化SVM算法提高了火焰识别的准确率和实时性,算法的自适应性更强,误判率更低。  相似文献   

20.
提出基于四元数主成分分析的三维荧光光谱特征提取新方法,并将其运用于品牌食醋溯源研究。首先利用F7000荧光光谱仪测得不同品牌食醋样本的三维荧光光谱数据,获取样本的等高线图和三维投影图,并进行三维荧光等高线图分析;然后利用激发波长分别为380,360和400 nm下的发射光谱数据建立食醋三维荧光光谱数据的四元数并行表示模型,对四元数荧光光谱矩阵进行四元数主成分特征提取,并基于乘积运算、模值运算和求和运算三种方法对提取出来的四元数主成分特征进行特征融合;最后将融合特征作为K近邻分类器的输入,得到不同食醋品牌的最优分类模型。分别讨论三种不同特征融合方法和四元数主成分个数与最终模型分类正确率之间的关系。针对四个不同食醋品牌120个样本的分析结果可得:基于求和特征融合运算所得到的融合特征可以利用最少的特征数目,建立最优的溯源模型,样本预测集溯源正确率可达100%。研究结果表明:四元数主成分特征提取和特征融合方法能够并行表示三维荧光光谱数据所蕴含的丰富信息,为三维荧光光谱数据分析提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号